Differentials for Lie algebras

Autores
Kuttler, Jochen; Pianzola, Arturo
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We develop a theory of relative Kähler differentials for Lie algebras. The main result is that the functor of relative differentials is representable, and that the universal object which represents it behaves properly with respect to étale base change. We illustrate how our construction yields a detailed analysis of the structure of derivations of multiloop algebras which is needed for the construction of Extended Affine Lie Algebras.
Fil: Kuttler, Jochen. University of Alberta; Canadá
Fil: Pianzola, Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Alberta; Canadá. Universidad Centro de Altos Estudios en Ciencia Exactas. Departamento de Matemáticas; Argentina
Materia
CENTROID
FAITHFULLY FLAT DESCENT
RELATIVE KÄHLER DIFFERENTIALS OF LIE ALGEBRAS
TWISTED FORM
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/98689

id CONICETDig_4d70cfbe264732688e165a216c1c384d
oai_identifier_str oai:ri.conicet.gov.ar:11336/98689
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Differentials for Lie algebrasKuttler, JochenPianzola, ArturoCENTROIDFAITHFULLY FLAT DESCENTRELATIVE KÄHLER DIFFERENTIALS OF LIE ALGEBRASTWISTED FORMhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We develop a theory of relative Kähler differentials for Lie algebras. The main result is that the functor of relative differentials is representable, and that the universal object which represents it behaves properly with respect to étale base change. We illustrate how our construction yields a detailed analysis of the structure of derivations of multiloop algebras which is needed for the construction of Extended Affine Lie Algebras.Fil: Kuttler, Jochen. University of Alberta; CanadáFil: Pianzola, Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Alberta; Canadá. Universidad Centro de Altos Estudios en Ciencia Exactas. Departamento de Matemáticas; ArgentinaSpringer2015-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98689Kuttler, Jochen; Pianzola, Arturo; Differentials for Lie algebras; Springer; Algebras and Representation Theory; 18; 4; 8-2015; 941-9601386-923XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10468-015-9526-yinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10468-015-9526-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:39Zoai:ri.conicet.gov.ar:11336/98689instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:39.326CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Differentials for Lie algebras
title Differentials for Lie algebras
spellingShingle Differentials for Lie algebras
Kuttler, Jochen
CENTROID
FAITHFULLY FLAT DESCENT
RELATIVE KÄHLER DIFFERENTIALS OF LIE ALGEBRAS
TWISTED FORM
title_short Differentials for Lie algebras
title_full Differentials for Lie algebras
title_fullStr Differentials for Lie algebras
title_full_unstemmed Differentials for Lie algebras
title_sort Differentials for Lie algebras
dc.creator.none.fl_str_mv Kuttler, Jochen
Pianzola, Arturo
author Kuttler, Jochen
author_facet Kuttler, Jochen
Pianzola, Arturo
author_role author
author2 Pianzola, Arturo
author2_role author
dc.subject.none.fl_str_mv CENTROID
FAITHFULLY FLAT DESCENT
RELATIVE KÄHLER DIFFERENTIALS OF LIE ALGEBRAS
TWISTED FORM
topic CENTROID
FAITHFULLY FLAT DESCENT
RELATIVE KÄHLER DIFFERENTIALS OF LIE ALGEBRAS
TWISTED FORM
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We develop a theory of relative Kähler differentials for Lie algebras. The main result is that the functor of relative differentials is representable, and that the universal object which represents it behaves properly with respect to étale base change. We illustrate how our construction yields a detailed analysis of the structure of derivations of multiloop algebras which is needed for the construction of Extended Affine Lie Algebras.
Fil: Kuttler, Jochen. University of Alberta; Canadá
Fil: Pianzola, Arturo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. University of Alberta; Canadá. Universidad Centro de Altos Estudios en Ciencia Exactas. Departamento de Matemáticas; Argentina
description We develop a theory of relative Kähler differentials for Lie algebras. The main result is that the functor of relative differentials is representable, and that the universal object which represents it behaves properly with respect to étale base change. We illustrate how our construction yields a detailed analysis of the structure of derivations of multiloop algebras which is needed for the construction of Extended Affine Lie Algebras.
publishDate 2015
dc.date.none.fl_str_mv 2015-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/98689
Kuttler, Jochen; Pianzola, Arturo; Differentials for Lie algebras; Springer; Algebras and Representation Theory; 18; 4; 8-2015; 941-960
1386-923X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/98689
identifier_str_mv Kuttler, Jochen; Pianzola, Arturo; Differentials for Lie algebras; Springer; Algebras and Representation Theory; 18; 4; 8-2015; 941-960
1386-923X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10468-015-9526-y
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10468-015-9526-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613112625364992
score 13.070432