Maximal ideals and representations of twisted forms of algebras
- Autores
- Lau, Michael; Pianzola, Arturo
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Abstract Given a central simple algebra g g and a Galois extension of base rings S ∕ R S∕R, we show that the maximal ideals of twisted S ∕ R S∕R-forms of the algebra of currents g ( R ) g(R) are in natural bijection with the maximal ideals of R R. When g g is a Lie algebra, we use this to give a complete classification of the finite-dimensional simple modules over twisted forms of g ( R ) g(R).
Fil: Lau, Michael. Laval University; Canadá
Fil: Pianzola, Arturo. University of Alberta; Canadá. Universidad Centro de Altos Estudios en Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Galois descent
Maximal ideal
Twisted forms of algebras - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/27458
Ver los metadatos del registro completo
id |
CONICETDig_875b7061f7c714e734a18569a1e7ff6c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/27458 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Maximal ideals and representations of twisted forms of algebrasLau, MichaelPianzola, ArturoGalois descentMaximal idealTwisted forms of algebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Abstract Given a central simple algebra g g and a Galois extension of base rings S ∕ R S∕R, we show that the maximal ideals of twisted S ∕ R S∕R-forms of the algebra of currents g ( R ) g(R) are in natural bijection with the maximal ideals of R R. When g g is a Lie algebra, we use this to give a complete classification of the finite-dimensional simple modules over twisted forms of g ( R ) g(R).Fil: Lau, Michael. Laval University; CanadáFil: Pianzola, Arturo. University of Alberta; Canadá. Universidad Centro de Altos Estudios en Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaMathematical Sciences Publishers2013-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/27458Lau, Michael; Pianzola, Arturo; Maximal ideals and representations of twisted forms of algebras; Mathematical Sciences Publishers; Algebra & Number Theory; 7; 2; 7-2013; 431-4481937-06521944-7833CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.2140/ant.2013.7.431info:eu-repo/semantics/altIdentifier/url/https://msp.org/ant/2013/7-2/p07.xhtmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:24:30Zoai:ri.conicet.gov.ar:11336/27458instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:24:30.411CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Maximal ideals and representations of twisted forms of algebras |
title |
Maximal ideals and representations of twisted forms of algebras |
spellingShingle |
Maximal ideals and representations of twisted forms of algebras Lau, Michael Galois descent Maximal ideal Twisted forms of algebras |
title_short |
Maximal ideals and representations of twisted forms of algebras |
title_full |
Maximal ideals and representations of twisted forms of algebras |
title_fullStr |
Maximal ideals and representations of twisted forms of algebras |
title_full_unstemmed |
Maximal ideals and representations of twisted forms of algebras |
title_sort |
Maximal ideals and representations of twisted forms of algebras |
dc.creator.none.fl_str_mv |
Lau, Michael Pianzola, Arturo |
author |
Lau, Michael |
author_facet |
Lau, Michael Pianzola, Arturo |
author_role |
author |
author2 |
Pianzola, Arturo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Galois descent Maximal ideal Twisted forms of algebras |
topic |
Galois descent Maximal ideal Twisted forms of algebras |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Abstract Given a central simple algebra g g and a Galois extension of base rings S ∕ R S∕R, we show that the maximal ideals of twisted S ∕ R S∕R-forms of the algebra of currents g ( R ) g(R) are in natural bijection with the maximal ideals of R R. When g g is a Lie algebra, we use this to give a complete classification of the finite-dimensional simple modules over twisted forms of g ( R ) g(R). Fil: Lau, Michael. Laval University; Canadá Fil: Pianzola, Arturo. University of Alberta; Canadá. Universidad Centro de Altos Estudios en Ciencias Exactas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Abstract Given a central simple algebra g g and a Galois extension of base rings S ∕ R S∕R, we show that the maximal ideals of twisted S ∕ R S∕R-forms of the algebra of currents g ( R ) g(R) are in natural bijection with the maximal ideals of R R. When g g is a Lie algebra, we use this to give a complete classification of the finite-dimensional simple modules over twisted forms of g ( R ) g(R). |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/27458 Lau, Michael; Pianzola, Arturo; Maximal ideals and representations of twisted forms of algebras; Mathematical Sciences Publishers; Algebra & Number Theory; 7; 2; 7-2013; 431-448 1937-0652 1944-7833 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/27458 |
identifier_str_mv |
Lau, Michael; Pianzola, Arturo; Maximal ideals and representations of twisted forms of algebras; Mathematical Sciences Publishers; Algebra & Number Theory; 7; 2; 7-2013; 431-448 1937-0652 1944-7833 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.2140/ant.2013.7.431 info:eu-repo/semantics/altIdentifier/url/https://msp.org/ant/2013/7-2/p07.xhtml |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Mathematical Sciences Publishers |
publisher.none.fl_str_mv |
Mathematical Sciences Publishers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614241506557952 |
score |
13.070432 |