Existence of peregrine type solutions in fractional reaction–Diffusion equations

Autores
Besteiro, Agustin Tomas; Rial, Diego Fernando
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this article, we analyze the existence of Peregrine type solutions for the fractional reaction–diffusion equation by applying splitting-type methods. Peregrine type functions have two main characteristics, these are direct sum of functions of periodic type and functions that tend to zero at infinity. Well-posedness results are obtained for each particular characteristic, and for both combined.
Fil: Besteiro, Agustin Tomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rial, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
FRACTIONAL DIFFUSION
GLOBAL EXISTENCE
SPLITTING METHOD
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/116937

id CONICETDig_4c8b018dfaed93995ca5355b6b3968c8
oai_identifier_str oai:ri.conicet.gov.ar:11336/116937
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Existence of peregrine type solutions in fractional reaction–Diffusion equationsBesteiro, Agustin TomasRial, Diego FernandoFRACTIONAL DIFFUSIONGLOBAL EXISTENCESPLITTING METHODhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this article, we analyze the existence of Peregrine type solutions for the fractional reaction–diffusion equation by applying splitting-type methods. Peregrine type functions have two main characteristics, these are direct sum of functions of periodic type and functions that tend to zero at infinity. Well-posedness results are obtained for each particular characteristic, and for both combined.Fil: Besteiro, Agustin Tomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Rial, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaUniv Szeged2019-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/116937Besteiro, Agustin Tomas; Rial, Diego Fernando; Existence of peregrine type solutions in fractional reaction–Diffusion equations; Univ Szeged; Electronic Journal Of Qualitative Theory Of Differential Equations; 2019; 9; 2-2019; 1-91417-3875CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=7086info:eu-repo/semantics/altIdentifier/doi/10.14232/ejqtde.2019.1.9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:00:53Zoai:ri.conicet.gov.ar:11336/116937instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:00:54.114CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Existence of peregrine type solutions in fractional reaction–Diffusion equations
title Existence of peregrine type solutions in fractional reaction–Diffusion equations
spellingShingle Existence of peregrine type solutions in fractional reaction–Diffusion equations
Besteiro, Agustin Tomas
FRACTIONAL DIFFUSION
GLOBAL EXISTENCE
SPLITTING METHOD
title_short Existence of peregrine type solutions in fractional reaction–Diffusion equations
title_full Existence of peregrine type solutions in fractional reaction–Diffusion equations
title_fullStr Existence of peregrine type solutions in fractional reaction–Diffusion equations
title_full_unstemmed Existence of peregrine type solutions in fractional reaction–Diffusion equations
title_sort Existence of peregrine type solutions in fractional reaction–Diffusion equations
dc.creator.none.fl_str_mv Besteiro, Agustin Tomas
Rial, Diego Fernando
author Besteiro, Agustin Tomas
author_facet Besteiro, Agustin Tomas
Rial, Diego Fernando
author_role author
author2 Rial, Diego Fernando
author2_role author
dc.subject.none.fl_str_mv FRACTIONAL DIFFUSION
GLOBAL EXISTENCE
SPLITTING METHOD
topic FRACTIONAL DIFFUSION
GLOBAL EXISTENCE
SPLITTING METHOD
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this article, we analyze the existence of Peregrine type solutions for the fractional reaction–diffusion equation by applying splitting-type methods. Peregrine type functions have two main characteristics, these are direct sum of functions of periodic type and functions that tend to zero at infinity. Well-posedness results are obtained for each particular characteristic, and for both combined.
Fil: Besteiro, Agustin Tomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rial, Diego Fernando. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description In this article, we analyze the existence of Peregrine type solutions for the fractional reaction–diffusion equation by applying splitting-type methods. Peregrine type functions have two main characteristics, these are direct sum of functions of periodic type and functions that tend to zero at infinity. Well-posedness results are obtained for each particular characteristic, and for both combined.
publishDate 2019
dc.date.none.fl_str_mv 2019-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/116937
Besteiro, Agustin Tomas; Rial, Diego Fernando; Existence of peregrine type solutions in fractional reaction–Diffusion equations; Univ Szeged; Electronic Journal Of Qualitative Theory Of Differential Equations; 2019; 9; 2-2019; 1-9
1417-3875
CONICET Digital
CONICET
url http://hdl.handle.net/11336/116937
identifier_str_mv Besteiro, Agustin Tomas; Rial, Diego Fernando; Existence of peregrine type solutions in fractional reaction–Diffusion equations; Univ Szeged; Electronic Journal Of Qualitative Theory Of Differential Equations; 2019; 9; 2-2019; 1-9
1417-3875
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=7086
info:eu-repo/semantics/altIdentifier/doi/10.14232/ejqtde.2019.1.9
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Univ Szeged
publisher.none.fl_str_mv Univ Szeged
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842979912702492672
score 12.993085