Planar Normal Sections on Isoparametric Hypersurfaces and the infinity laplacian

Autores
Barros, Julio; Sanchez, Cristian Urbano
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The present article is devoted to present a new characterization of the Cartan isoparametric hypersurfaces in terms of properties of the polynomial, that determines the algebraic set of planar normal sections on the homogeneous isoparametric hypersurfaces in spheres. We show that Cartan isoparametric hypersurfaces are the only homo- geneous isoparametric hypersurfaces in spheres for which the Innity Laplacian of the polynomial that denes the algebraic set of planar normal sections is the polynomial multiplied by the squared norm of the tangent vector. Since it is required for our work, we also give these polynomials for all homogeneous isoparametric hypersurfaces in spheres.
Fil: Barros, Julio. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Departamento de Matematicas; Argentina
Fil: Sanchez, Cristian Urbano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina
Materia
NORMAL SECTIONS
INFINITY LAPLACIAN
ISOPARAMETRIC HYPERSURFACES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/10571

id CONICETDig_d48211f580cbd7846fbc553d930b5ba8
oai_identifier_str oai:ri.conicet.gov.ar:11336/10571
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Planar Normal Sections on Isoparametric Hypersurfaces and the infinity laplacianBarros, JulioSanchez, Cristian UrbanoNORMAL SECTIONSINFINITY LAPLACIANISOPARAMETRIC HYPERSURFACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The present article is devoted to present a new characterization of the Cartan isoparametric hypersurfaces in terms of properties of the polynomial, that determines the algebraic set of planar normal sections on the homogeneous isoparametric hypersurfaces in spheres. We show that Cartan isoparametric hypersurfaces are the only homo- geneous isoparametric hypersurfaces in spheres for which the Innity Laplacian of the polynomial that denes the algebraic set of planar normal sections is the polynomial multiplied by the squared norm of the tangent vector. Since it is required for our work, we also give these polynomials for all homogeneous isoparametric hypersurfaces in spheres.Fil: Barros, Julio. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Departamento de Matematicas; ArgentinaFil: Sanchez, Cristian Urbano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); ArgentinaUnión Matemática Argentina2014-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/10571Barros, Julio; Sanchez, Cristian Urbano; Planar Normal Sections on Isoparametric Hypersurfaces and the infinity laplacian; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 55; 2; 11-2014; 107-1210041-69321669-9637enginfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v55n2/v55n2a06.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:22:14Zoai:ri.conicet.gov.ar:11336/10571instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:22:14.645CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Planar Normal Sections on Isoparametric Hypersurfaces and the infinity laplacian
title Planar Normal Sections on Isoparametric Hypersurfaces and the infinity laplacian
spellingShingle Planar Normal Sections on Isoparametric Hypersurfaces and the infinity laplacian
Barros, Julio
NORMAL SECTIONS
INFINITY LAPLACIAN
ISOPARAMETRIC HYPERSURFACES
title_short Planar Normal Sections on Isoparametric Hypersurfaces and the infinity laplacian
title_full Planar Normal Sections on Isoparametric Hypersurfaces and the infinity laplacian
title_fullStr Planar Normal Sections on Isoparametric Hypersurfaces and the infinity laplacian
title_full_unstemmed Planar Normal Sections on Isoparametric Hypersurfaces and the infinity laplacian
title_sort Planar Normal Sections on Isoparametric Hypersurfaces and the infinity laplacian
dc.creator.none.fl_str_mv Barros, Julio
Sanchez, Cristian Urbano
author Barros, Julio
author_facet Barros, Julio
Sanchez, Cristian Urbano
author_role author
author2 Sanchez, Cristian Urbano
author2_role author
dc.subject.none.fl_str_mv NORMAL SECTIONS
INFINITY LAPLACIAN
ISOPARAMETRIC HYPERSURFACES
topic NORMAL SECTIONS
INFINITY LAPLACIAN
ISOPARAMETRIC HYPERSURFACES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The present article is devoted to present a new characterization of the Cartan isoparametric hypersurfaces in terms of properties of the polynomial, that determines the algebraic set of planar normal sections on the homogeneous isoparametric hypersurfaces in spheres. We show that Cartan isoparametric hypersurfaces are the only homo- geneous isoparametric hypersurfaces in spheres for which the Innity Laplacian of the polynomial that denes the algebraic set of planar normal sections is the polynomial multiplied by the squared norm of the tangent vector. Since it is required for our work, we also give these polynomials for all homogeneous isoparametric hypersurfaces in spheres.
Fil: Barros, Julio. Universidad Nacional de Rio Cuarto. Facultad de Cs.exactas Fisicoquimicas y Naturales. Departamento de Matematicas; Argentina
Fil: Sanchez, Cristian Urbano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigación y Estudios de Matemática de Córdoba(p); Argentina
description The present article is devoted to present a new characterization of the Cartan isoparametric hypersurfaces in terms of properties of the polynomial, that determines the algebraic set of planar normal sections on the homogeneous isoparametric hypersurfaces in spheres. We show that Cartan isoparametric hypersurfaces are the only homo- geneous isoparametric hypersurfaces in spheres for which the Innity Laplacian of the polynomial that denes the algebraic set of planar normal sections is the polynomial multiplied by the squared norm of the tangent vector. Since it is required for our work, we also give these polynomials for all homogeneous isoparametric hypersurfaces in spheres.
publishDate 2014
dc.date.none.fl_str_mv 2014-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/10571
Barros, Julio; Sanchez, Cristian Urbano; Planar Normal Sections on Isoparametric Hypersurfaces and the infinity laplacian; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 55; 2; 11-2014; 107-121
0041-6932
1669-9637
url http://hdl.handle.net/11336/10571
identifier_str_mv Barros, Julio; Sanchez, Cristian Urbano; Planar Normal Sections on Isoparametric Hypersurfaces and the infinity laplacian; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 55; 2; 11-2014; 107-121
0041-6932
1669-9637
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v55n2/v55n2a06.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Unión Matemática Argentina
publisher.none.fl_str_mv Unión Matemática Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781737172992000
score 12.982451