Time-Energy Optimal Cluster Space Motion Planning for Mobile Robot Formations
- Autores
- Stanhouse, Kyle; Kitts, Chris; Mas, Ignacio Agustin
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- parte de libro
- Estado
- versión publicada
- Descripción
- The motions of a formation of mobile robots along predetermined paths are optimized according to a tunable time-energy cost function using the cluster space approach to multiagent system specification and control. Upon path-parameterizing cluster state variables describing the geometry and pose of a multirobot group, an optimal control problem is formulated that incorporates formation dynamics and state constraints. The optimal trajectory is derived numerically via a gradient search, iterating over the initial value of one costate. A multirobot formation control simulation is then used to demonstrate the effectiveness of the technique. Results indicate that a substantial tradeoff is made between energy expenditure and motion time when considered as minimization criteria in varying proportions, allowing the operator to tailor mission trajectories according to desired levels of each.
Fil: Stanhouse, Kyle. No especifíca;
Fil: Kitts, Chris. No especifíca;
Fil: Mas, Ignacio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires. Departamento de Matemática. Centro de Sistemas y Control; Argentina - Materia
-
mobile robots
time-energy optimization
motion planning
multi-robot systems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/107920
Ver los metadatos del registro completo
id |
CONICETDig_4c28eae233b095e1551bdb690c7c63e9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/107920 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Time-Energy Optimal Cluster Space Motion Planning for Mobile Robot FormationsStanhouse, KyleKitts, ChrisMas, Ignacio Agustinmobile robotstime-energy optimizationmotion planningmulti-robot systemshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2The motions of a formation of mobile robots along predetermined paths are optimized according to a tunable time-energy cost function using the cluster space approach to multiagent system specification and control. Upon path-parameterizing cluster state variables describing the geometry and pose of a multirobot group, an optimal control problem is formulated that incorporates formation dynamics and state constraints. The optimal trajectory is derived numerically via a gradient search, iterating over the initial value of one costate. A multirobot formation control simulation is then used to demonstrate the effectiveness of the technique. Results indicate that a substantial tradeoff is made between energy expenditure and motion time when considered as minimization criteria in varying proportions, allowing the operator to tailor mission trajectories according to desired levels of each.Fil: Stanhouse, Kyle. No especifíca;Fil: Kitts, Chris. No especifíca;Fil: Mas, Ignacio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires. Departamento de Matemática. Centro de Sistemas y Control; ArgentinaIntechOpenWang, Guanghui2016info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bookParthttp://purl.org/coar/resource_type/c_3248info:ar-repo/semantics/parteDeLibroapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/107920Stanhouse, Kyle; Kitts, Chris; Mas, Ignacio Agustin; Time-Energy Optimal Cluster Space Motion Planning for Mobile Robot Formations; IntechOpen; 2016; 141-163978-953-51-2571-6CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.intechopen.com/books/recent-advances-in-robotic-systems/time-energy-optimal-cluster-space-motion-planning-for-mobile-robot-formationsinfo:eu-repo/semantics/altIdentifier/doi/10.5772/64615info:eu-repo/semantics/altIdentifier/url/https://www.intechopen.com/books/recent-advances-in-robotic-systemsinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:47:17Zoai:ri.conicet.gov.ar:11336/107920instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:47:17.601CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Time-Energy Optimal Cluster Space Motion Planning for Mobile Robot Formations |
title |
Time-Energy Optimal Cluster Space Motion Planning for Mobile Robot Formations |
spellingShingle |
Time-Energy Optimal Cluster Space Motion Planning for Mobile Robot Formations Stanhouse, Kyle mobile robots time-energy optimization motion planning multi-robot systems |
title_short |
Time-Energy Optimal Cluster Space Motion Planning for Mobile Robot Formations |
title_full |
Time-Energy Optimal Cluster Space Motion Planning for Mobile Robot Formations |
title_fullStr |
Time-Energy Optimal Cluster Space Motion Planning for Mobile Robot Formations |
title_full_unstemmed |
Time-Energy Optimal Cluster Space Motion Planning for Mobile Robot Formations |
title_sort |
Time-Energy Optimal Cluster Space Motion Planning for Mobile Robot Formations |
dc.creator.none.fl_str_mv |
Stanhouse, Kyle Kitts, Chris Mas, Ignacio Agustin |
author |
Stanhouse, Kyle |
author_facet |
Stanhouse, Kyle Kitts, Chris Mas, Ignacio Agustin |
author_role |
author |
author2 |
Kitts, Chris Mas, Ignacio Agustin |
author2_role |
author author |
dc.contributor.none.fl_str_mv |
Wang, Guanghui |
dc.subject.none.fl_str_mv |
mobile robots time-energy optimization motion planning multi-robot systems |
topic |
mobile robots time-energy optimization motion planning multi-robot systems |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The motions of a formation of mobile robots along predetermined paths are optimized according to a tunable time-energy cost function using the cluster space approach to multiagent system specification and control. Upon path-parameterizing cluster state variables describing the geometry and pose of a multirobot group, an optimal control problem is formulated that incorporates formation dynamics and state constraints. The optimal trajectory is derived numerically via a gradient search, iterating over the initial value of one costate. A multirobot formation control simulation is then used to demonstrate the effectiveness of the technique. Results indicate that a substantial tradeoff is made between energy expenditure and motion time when considered as minimization criteria in varying proportions, allowing the operator to tailor mission trajectories according to desired levels of each. Fil: Stanhouse, Kyle. No especifíca; Fil: Kitts, Chris. No especifíca; Fil: Mas, Ignacio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Tecnológico de Buenos Aires. Departamento de Matemática. Centro de Sistemas y Control; Argentina |
description |
The motions of a formation of mobile robots along predetermined paths are optimized according to a tunable time-energy cost function using the cluster space approach to multiagent system specification and control. Upon path-parameterizing cluster state variables describing the geometry and pose of a multirobot group, an optimal control problem is formulated that incorporates formation dynamics and state constraints. The optimal trajectory is derived numerically via a gradient search, iterating over the initial value of one costate. A multirobot formation control simulation is then used to demonstrate the effectiveness of the technique. Results indicate that a substantial tradeoff is made between energy expenditure and motion time when considered as minimization criteria in varying proportions, allowing the operator to tailor mission trajectories according to desired levels of each. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/bookPart http://purl.org/coar/resource_type/c_3248 info:ar-repo/semantics/parteDeLibro |
status_str |
publishedVersion |
format |
bookPart |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/107920 Stanhouse, Kyle; Kitts, Chris; Mas, Ignacio Agustin; Time-Energy Optimal Cluster Space Motion Planning for Mobile Robot Formations; IntechOpen; 2016; 141-163 978-953-51-2571-6 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/107920 |
identifier_str_mv |
Stanhouse, Kyle; Kitts, Chris; Mas, Ignacio Agustin; Time-Energy Optimal Cluster Space Motion Planning for Mobile Robot Formations; IntechOpen; 2016; 141-163 978-953-51-2571-6 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.intechopen.com/books/recent-advances-in-robotic-systems/time-energy-optimal-cluster-space-motion-planning-for-mobile-robot-formations info:eu-repo/semantics/altIdentifier/doi/10.5772/64615 info:eu-repo/semantics/altIdentifier/url/https://www.intechopen.com/books/recent-advances-in-robotic-systems |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IntechOpen |
publisher.none.fl_str_mv |
IntechOpen |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614516196769792 |
score |
13.070432 |