Cognitive social zones for improving the pedestrian collision avoidance with mobile robots

Autores
Daniel Herrera; Giménez, Javier; Monllor, Matias Miguel; Roberti, Flavio; Carelli Albarracin, Ricardo Oscar
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Los comportamientos sociales son esenciales para mejorar la aceptación social de un robot en ambientes compartidos con humanos. Uno de las cualidades más importantes es sin duda el espacio social. Este mecanismo humano actúa como un campo repulsivo para garantizar interacciones confortables. Su modelado ha sido ampliamente estudiado en robótica social, sin embargo su inferencia experimental ha sido apenas mencionada. De esta manera, este trabajo propone un novedoso algoritmo para inferir las dimensiones de una zona social elíptica a partir de una nube de puntos alrededor del robot. El enfoque consiste en identificar cómo los humanos evitan al robot durante una evasión en un ambiente compartido, y posteriormente usar esta experiencia para representar obstáculos humanos como campos elípticos potenciales con las dimensiones previamente identificadas. Para ésto, el algoritmo empieza con una primera etapa de aprendizaje donde el robot navega sin evadir a los humanos, i.e. los humanos estan a cargo de evadir al robot durante el desenvolvimiento de sus tareas. Durante este periodo, el robot genera una nube de puntos de mediciones laser 2D desde su marco de referencia para definir las zonas de no-inferencia humana alrededor de sí mismo, pero priorizando sus cercanías. Posteriormente, la zona social que ha sido inferida se incorpora a un control de movimiento basado en espacios nulos (NSB) para un robot móvil no holonómico, el cual se diseña para seguir trayectorias y evitar colisiones con peatones. Finalmente, el rendimiento del algoritmo de aprendizaje y el control de movimiento es verificado experimentalmente.
Social behaviors are crucial to improve the acceptance of a robot in human-shared environments. One of the most important social cues is undoubtedly the social space. This human mechanism acts like a repulsive field to guarantee comfortable interactions. Its modeling has been widely studied in social robotics, but its experimental inference has been weakly mentioned. Thereby, this paper proposes a novel algorithm to infer the dimensions of an elliptical social zone from a points-cloud around the robot. The approach consists of identifying how the humans avoid a robot during navigation in shared scenarios, and later use this experience to represent humans obstacles like elliptical potential fields with the previously identified dimensions. Thus, the algorithm starts with a first-learning stage where the robot navigates without avoiding humans, i.e. the humans are in charge of avoiding the robots while developing their tasks. During this period, the robot generates a points-cloud with 2D laser measures from its own framework to define the human-presence zones around itself but prioritizing its closest surroundings. Later, the inferred social zone is incorporated to a null-space-based (NSB) control for a non-holonomic mobile robot, which consists of both trajectory tracking and pedestrian collision avoidance. Finally, the performance of the learning algorithm and the motion control is verified through experimentation.
Fil: Daniel Herrera. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Giménez, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Monllor, Matias Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Roberti, Flavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Materia
HUMAN-ROBOT INTERACTION
CONTROL OF MOBILE ROBOTS
ROBOT COGNITION
SOCIAL ROBOTS
PROXEMICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/124985

id CONICETDig_7d5892cd73902dda26c6f24962573ec9
oai_identifier_str oai:ri.conicet.gov.ar:11336/124985
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Cognitive social zones for improving the pedestrian collision avoidance with mobile robotsZonas sociales cognitivas para mejorar la evasión de peatones con robots móvilesDaniel HerreraGiménez, JavierMonllor, Matias MiguelRoberti, FlavioCarelli Albarracin, Ricardo OscarHUMAN-ROBOT INTERACTIONCONTROL OF MOBILE ROBOTSROBOT COGNITIONSOCIAL ROBOTSPROXEMICShttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Los comportamientos sociales son esenciales para mejorar la aceptación social de un robot en ambientes compartidos con humanos. Uno de las cualidades más importantes es sin duda el espacio social. Este mecanismo humano actúa como un campo repulsivo para garantizar interacciones confortables. Su modelado ha sido ampliamente estudiado en robótica social, sin embargo su inferencia experimental ha sido apenas mencionada. De esta manera, este trabajo propone un novedoso algoritmo para inferir las dimensiones de una zona social elíptica a partir de una nube de puntos alrededor del robot. El enfoque consiste en identificar cómo los humanos evitan al robot durante una evasión en un ambiente compartido, y posteriormente usar esta experiencia para representar obstáculos humanos como campos elípticos potenciales con las dimensiones previamente identificadas. Para ésto, el algoritmo empieza con una primera etapa de aprendizaje donde el robot navega sin evadir a los humanos, i.e. los humanos estan a cargo de evadir al robot durante el desenvolvimiento de sus tareas. Durante este periodo, el robot genera una nube de puntos de mediciones laser 2D desde su marco de referencia para definir las zonas de no-inferencia humana alrededor de sí mismo, pero priorizando sus cercanías. Posteriormente, la zona social que ha sido inferida se incorpora a un control de movimiento basado en espacios nulos (NSB) para un robot móvil no holonómico, el cual se diseña para seguir trayectorias y evitar colisiones con peatones. Finalmente, el rendimiento del algoritmo de aprendizaje y el control de movimiento es verificado experimentalmente.Social behaviors are crucial to improve the acceptance of a robot in human-shared environments. One of the most important social cues is undoubtedly the social space. This human mechanism acts like a repulsive field to guarantee comfortable interactions. Its modeling has been widely studied in social robotics, but its experimental inference has been weakly mentioned. Thereby, this paper proposes a novel algorithm to infer the dimensions of an elliptical social zone from a points-cloud around the robot. The approach consists of identifying how the humans avoid a robot during navigation in shared scenarios, and later use this experience to represent humans obstacles like elliptical potential fields with the previously identified dimensions. Thus, the algorithm starts with a first-learning stage where the robot navigates without avoiding humans, i.e. the humans are in charge of avoiding the robots while developing their tasks. During this period, the robot generates a points-cloud with 2D laser measures from its own framework to define the human-presence zones around itself but prioritizing its closest surroundings. Later, the inferred social zone is incorporated to a null-space-based (NSB) control for a non-holonomic mobile robot, which consists of both trajectory tracking and pedestrian collision avoidance. Finally, the performance of the learning algorithm and the motion control is verified through experimentation.Fil: Daniel Herrera. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Giménez, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Monllor, Matias Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Roberti, Flavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaFil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; ArgentinaEscuela Politécnica Nacional2019-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/124985Daniel Herrera; Giménez, Javier; Monllor, Matias Miguel; Roberti, Flavio; Carelli Albarracin, Ricardo Oscar; Cognitive social zones for improving the pedestrian collision avoidance with mobile robots; Escuela Politécnica Nacional; Revista Politécnica; 42; 2; 1-2019; 7-141390-0129CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/article/view/1015info:eu-repo/semantics/altIdentifier/doi/10.33333/rp.vol42n2.1015info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:33:43Zoai:ri.conicet.gov.ar:11336/124985instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:33:43.407CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Cognitive social zones for improving the pedestrian collision avoidance with mobile robots
Zonas sociales cognitivas para mejorar la evasión de peatones con robots móviles
title Cognitive social zones for improving the pedestrian collision avoidance with mobile robots
spellingShingle Cognitive social zones for improving the pedestrian collision avoidance with mobile robots
Daniel Herrera
HUMAN-ROBOT INTERACTION
CONTROL OF MOBILE ROBOTS
ROBOT COGNITION
SOCIAL ROBOTS
PROXEMICS
title_short Cognitive social zones for improving the pedestrian collision avoidance with mobile robots
title_full Cognitive social zones for improving the pedestrian collision avoidance with mobile robots
title_fullStr Cognitive social zones for improving the pedestrian collision avoidance with mobile robots
title_full_unstemmed Cognitive social zones for improving the pedestrian collision avoidance with mobile robots
title_sort Cognitive social zones for improving the pedestrian collision avoidance with mobile robots
dc.creator.none.fl_str_mv Daniel Herrera
Giménez, Javier
Monllor, Matias Miguel
Roberti, Flavio
Carelli Albarracin, Ricardo Oscar
author Daniel Herrera
author_facet Daniel Herrera
Giménez, Javier
Monllor, Matias Miguel
Roberti, Flavio
Carelli Albarracin, Ricardo Oscar
author_role author
author2 Giménez, Javier
Monllor, Matias Miguel
Roberti, Flavio
Carelli Albarracin, Ricardo Oscar
author2_role author
author
author
author
dc.subject.none.fl_str_mv HUMAN-ROBOT INTERACTION
CONTROL OF MOBILE ROBOTS
ROBOT COGNITION
SOCIAL ROBOTS
PROXEMICS
topic HUMAN-ROBOT INTERACTION
CONTROL OF MOBILE ROBOTS
ROBOT COGNITION
SOCIAL ROBOTS
PROXEMICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.2
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Los comportamientos sociales son esenciales para mejorar la aceptación social de un robot en ambientes compartidos con humanos. Uno de las cualidades más importantes es sin duda el espacio social. Este mecanismo humano actúa como un campo repulsivo para garantizar interacciones confortables. Su modelado ha sido ampliamente estudiado en robótica social, sin embargo su inferencia experimental ha sido apenas mencionada. De esta manera, este trabajo propone un novedoso algoritmo para inferir las dimensiones de una zona social elíptica a partir de una nube de puntos alrededor del robot. El enfoque consiste en identificar cómo los humanos evitan al robot durante una evasión en un ambiente compartido, y posteriormente usar esta experiencia para representar obstáculos humanos como campos elípticos potenciales con las dimensiones previamente identificadas. Para ésto, el algoritmo empieza con una primera etapa de aprendizaje donde el robot navega sin evadir a los humanos, i.e. los humanos estan a cargo de evadir al robot durante el desenvolvimiento de sus tareas. Durante este periodo, el robot genera una nube de puntos de mediciones laser 2D desde su marco de referencia para definir las zonas de no-inferencia humana alrededor de sí mismo, pero priorizando sus cercanías. Posteriormente, la zona social que ha sido inferida se incorpora a un control de movimiento basado en espacios nulos (NSB) para un robot móvil no holonómico, el cual se diseña para seguir trayectorias y evitar colisiones con peatones. Finalmente, el rendimiento del algoritmo de aprendizaje y el control de movimiento es verificado experimentalmente.
Social behaviors are crucial to improve the acceptance of a robot in human-shared environments. One of the most important social cues is undoubtedly the social space. This human mechanism acts like a repulsive field to guarantee comfortable interactions. Its modeling has been widely studied in social robotics, but its experimental inference has been weakly mentioned. Thereby, this paper proposes a novel algorithm to infer the dimensions of an elliptical social zone from a points-cloud around the robot. The approach consists of identifying how the humans avoid a robot during navigation in shared scenarios, and later use this experience to represent humans obstacles like elliptical potential fields with the previously identified dimensions. Thus, the algorithm starts with a first-learning stage where the robot navigates without avoiding humans, i.e. the humans are in charge of avoiding the robots while developing their tasks. During this period, the robot generates a points-cloud with 2D laser measures from its own framework to define the human-presence zones around itself but prioritizing its closest surroundings. Later, the inferred social zone is incorporated to a null-space-based (NSB) control for a non-holonomic mobile robot, which consists of both trajectory tracking and pedestrian collision avoidance. Finally, the performance of the learning algorithm and the motion control is verified through experimentation.
Fil: Daniel Herrera. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Giménez, Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Monllor, Matias Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Roberti, Flavio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
Fil: Carelli Albarracin, Ricardo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Automática. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Automática; Argentina
description Los comportamientos sociales son esenciales para mejorar la aceptación social de un robot en ambientes compartidos con humanos. Uno de las cualidades más importantes es sin duda el espacio social. Este mecanismo humano actúa como un campo repulsivo para garantizar interacciones confortables. Su modelado ha sido ampliamente estudiado en robótica social, sin embargo su inferencia experimental ha sido apenas mencionada. De esta manera, este trabajo propone un novedoso algoritmo para inferir las dimensiones de una zona social elíptica a partir de una nube de puntos alrededor del robot. El enfoque consiste en identificar cómo los humanos evitan al robot durante una evasión en un ambiente compartido, y posteriormente usar esta experiencia para representar obstáculos humanos como campos elípticos potenciales con las dimensiones previamente identificadas. Para ésto, el algoritmo empieza con una primera etapa de aprendizaje donde el robot navega sin evadir a los humanos, i.e. los humanos estan a cargo de evadir al robot durante el desenvolvimiento de sus tareas. Durante este periodo, el robot genera una nube de puntos de mediciones laser 2D desde su marco de referencia para definir las zonas de no-inferencia humana alrededor de sí mismo, pero priorizando sus cercanías. Posteriormente, la zona social que ha sido inferida se incorpora a un control de movimiento basado en espacios nulos (NSB) para un robot móvil no holonómico, el cual se diseña para seguir trayectorias y evitar colisiones con peatones. Finalmente, el rendimiento del algoritmo de aprendizaje y el control de movimiento es verificado experimentalmente.
publishDate 2019
dc.date.none.fl_str_mv 2019-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/124985
Daniel Herrera; Giménez, Javier; Monllor, Matias Miguel; Roberti, Flavio; Carelli Albarracin, Ricardo Oscar; Cognitive social zones for improving the pedestrian collision avoidance with mobile robots; Escuela Politécnica Nacional; Revista Politécnica; 42; 2; 1-2019; 7-14
1390-0129
CONICET Digital
CONICET
url http://hdl.handle.net/11336/124985
identifier_str_mv Daniel Herrera; Giménez, Javier; Monllor, Matias Miguel; Roberti, Flavio; Carelli Albarracin, Ricardo Oscar; Cognitive social zones for improving the pedestrian collision avoidance with mobile robots; Escuela Politécnica Nacional; Revista Politécnica; 42; 2; 1-2019; 7-14
1390-0129
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/article/view/1015
info:eu-repo/semantics/altIdentifier/doi/10.33333/rp.vol42n2.1015
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Escuela Politécnica Nacional
publisher.none.fl_str_mv Escuela Politécnica Nacional
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614352738451456
score 13.070432