Feature Fusion for Fingerprint Liveness Detection: A Comparative Study
- Autores
- Toosi, Amirhosein; Bottino, Andrea; Cumani, Sandro; Negri, Pablo Augusto; Sottile, Pietro Luca
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Spoofing attacks carried out using artificial replicas are a severe threat for fingerprint-based biometric systems and, thus, require the development of effective countermeasures. One possible protection method is to implement software modules that analyze fingerprint images to tell live from fake samples. Most of the static software-based approaches in the literature are based on various image features, each with its own strengths, weaknesses, and discriminative power. Such features can be seen as different and often complementary views of the object in analysis, and their fusion is likely to improve the classification accuracy. This paper aims at assessing the potential of these feature fusion approaches in the area of fingerprint liveness detection by analyzing different features and different methods for their aggregation. Experiments on publicly available benchmarks show the effectiveness of feature fusion methods, which improve the accuracy of those based on individual features and are competitive with respect to the alternative methods, such as the ones based on convolutional neural networks.
Fil: Toosi, Amirhosein. Politecnico di Torino; Italia
Fil: Bottino, Andrea. Politecnico di Torino; Italia
Fil: Cumani, Sandro. Politecnico di Torino; Italia
Fil: Negri, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina
Fil: Sottile, Pietro Luca. Politecnico di Torino; Italia - Materia
-
BIOMETRIC COUNTERSPOOFING METHODS
FEATURE FUSION
FINGERPRINT LIVENESS DETECTION
LOCAL IMAGE FEATURES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/74263
Ver los metadatos del registro completo
id |
CONICETDig_a938ab6766e75a0a3769ae39af413d39 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/74263 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Feature Fusion for Fingerprint Liveness Detection: A Comparative StudyToosi, AmirhoseinBottino, AndreaCumani, SandroNegri, Pablo AugustoSottile, Pietro LucaBIOMETRIC COUNTERSPOOFING METHODSFEATURE FUSIONFINGERPRINT LIVENESS DETECTIONLOCAL IMAGE FEATUREShttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Spoofing attacks carried out using artificial replicas are a severe threat for fingerprint-based biometric systems and, thus, require the development of effective countermeasures. One possible protection method is to implement software modules that analyze fingerprint images to tell live from fake samples. Most of the static software-based approaches in the literature are based on various image features, each with its own strengths, weaknesses, and discriminative power. Such features can be seen as different and often complementary views of the object in analysis, and their fusion is likely to improve the classification accuracy. This paper aims at assessing the potential of these feature fusion approaches in the area of fingerprint liveness detection by analyzing different features and different methods for their aggregation. Experiments on publicly available benchmarks show the effectiveness of feature fusion methods, which improve the accuracy of those based on individual features and are competitive with respect to the alternative methods, such as the ones based on convolutional neural networks.Fil: Toosi, Amirhosein. Politecnico di Torino; ItaliaFil: Bottino, Andrea. Politecnico di Torino; ItaliaFil: Cumani, Sandro. Politecnico di Torino; ItaliaFil: Negri, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; ArgentinaFil: Sottile, Pietro Luca. Politecnico di Torino; ItaliaInstitute of Electrical and Electronics Engineers Inc.2017-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/74263Toosi, Amirhosein; Bottino, Andrea; Cumani, Sandro; Negri, Pablo Augusto; Sottile, Pietro Luca; Feature Fusion for Fingerprint Liveness Detection: A Comparative Study; Institute of Electrical and Electronics Engineers Inc.; IEEE Access; 5; 10-2017; 23695-237092169-3536CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1109/ACCESS.2017.2763419info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8068202/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:46:05Zoai:ri.conicet.gov.ar:11336/74263instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:46:05.915CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Feature Fusion for Fingerprint Liveness Detection: A Comparative Study |
title |
Feature Fusion for Fingerprint Liveness Detection: A Comparative Study |
spellingShingle |
Feature Fusion for Fingerprint Liveness Detection: A Comparative Study Toosi, Amirhosein BIOMETRIC COUNTERSPOOFING METHODS FEATURE FUSION FINGERPRINT LIVENESS DETECTION LOCAL IMAGE FEATURES |
title_short |
Feature Fusion for Fingerprint Liveness Detection: A Comparative Study |
title_full |
Feature Fusion for Fingerprint Liveness Detection: A Comparative Study |
title_fullStr |
Feature Fusion for Fingerprint Liveness Detection: A Comparative Study |
title_full_unstemmed |
Feature Fusion for Fingerprint Liveness Detection: A Comparative Study |
title_sort |
Feature Fusion for Fingerprint Liveness Detection: A Comparative Study |
dc.creator.none.fl_str_mv |
Toosi, Amirhosein Bottino, Andrea Cumani, Sandro Negri, Pablo Augusto Sottile, Pietro Luca |
author |
Toosi, Amirhosein |
author_facet |
Toosi, Amirhosein Bottino, Andrea Cumani, Sandro Negri, Pablo Augusto Sottile, Pietro Luca |
author_role |
author |
author2 |
Bottino, Andrea Cumani, Sandro Negri, Pablo Augusto Sottile, Pietro Luca |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
BIOMETRIC COUNTERSPOOFING METHODS FEATURE FUSION FINGERPRINT LIVENESS DETECTION LOCAL IMAGE FEATURES |
topic |
BIOMETRIC COUNTERSPOOFING METHODS FEATURE FUSION FINGERPRINT LIVENESS DETECTION LOCAL IMAGE FEATURES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Spoofing attacks carried out using artificial replicas are a severe threat for fingerprint-based biometric systems and, thus, require the development of effective countermeasures. One possible protection method is to implement software modules that analyze fingerprint images to tell live from fake samples. Most of the static software-based approaches in the literature are based on various image features, each with its own strengths, weaknesses, and discriminative power. Such features can be seen as different and often complementary views of the object in analysis, and their fusion is likely to improve the classification accuracy. This paper aims at assessing the potential of these feature fusion approaches in the area of fingerprint liveness detection by analyzing different features and different methods for their aggregation. Experiments on publicly available benchmarks show the effectiveness of feature fusion methods, which improve the accuracy of those based on individual features and are competitive with respect to the alternative methods, such as the ones based on convolutional neural networks. Fil: Toosi, Amirhosein. Politecnico di Torino; Italia Fil: Bottino, Andrea. Politecnico di Torino; Italia Fil: Cumani, Sandro. Politecnico di Torino; Italia Fil: Negri, Pablo Augusto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires; Argentina Fil: Sottile, Pietro Luca. Politecnico di Torino; Italia |
description |
Spoofing attacks carried out using artificial replicas are a severe threat for fingerprint-based biometric systems and, thus, require the development of effective countermeasures. One possible protection method is to implement software modules that analyze fingerprint images to tell live from fake samples. Most of the static software-based approaches in the literature are based on various image features, each with its own strengths, weaknesses, and discriminative power. Such features can be seen as different and often complementary views of the object in analysis, and their fusion is likely to improve the classification accuracy. This paper aims at assessing the potential of these feature fusion approaches in the area of fingerprint liveness detection by analyzing different features and different methods for their aggregation. Experiments on publicly available benchmarks show the effectiveness of feature fusion methods, which improve the accuracy of those based on individual features and are competitive with respect to the alternative methods, such as the ones based on convolutional neural networks. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/74263 Toosi, Amirhosein; Bottino, Andrea; Cumani, Sandro; Negri, Pablo Augusto; Sottile, Pietro Luca; Feature Fusion for Fingerprint Liveness Detection: A Comparative Study; Institute of Electrical and Electronics Engineers Inc.; IEEE Access; 5; 10-2017; 23695-23709 2169-3536 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/74263 |
identifier_str_mv |
Toosi, Amirhosein; Bottino, Andrea; Cumani, Sandro; Negri, Pablo Augusto; Sottile, Pietro Luca; Feature Fusion for Fingerprint Liveness Detection: A Comparative Study; Institute of Electrical and Electronics Engineers Inc.; IEEE Access; 5; 10-2017; 23695-23709 2169-3536 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1109/ACCESS.2017.2763419 info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/8068202/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613440315850752 |
score |
13.070432 |