Automatic detection of drowsiness in EEG records based on multimodal analysis
- Autores
- Garces Correa, Maria Agustina; Orosco, Lorena Liliana; Laciar Leber, Eric
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Drowsiness is one of the main causal factors in many traffic accidents due to the clear decline in the attention and recognition of danger drivers, diminishing vehicle-handling abilities. The aim of this research is to develop an automatic method to detect the drowsiness stage in EEG records using time, spectral and wavelet analysis. A total of 19 features were computed from only one EEG channel to differentiate the alertness and drowsiness stages. After a selection process based on lambda of Wilks criterion, 7 parameters were chosen to feed a Neural Network classifier. Eighteen EEG records were analyzed. The method gets 87.4% and 83.6% of alertness and drowsiness correct detections rates, respectively. The results obtained indicate that the parameters can differentiate both stages. The features are easy to calculate and can be obtained in real time. Those variables could be used in an automatic drowsiness detection system in vehicles, thereby decreasing the rate of accidents caused by sleepiness of the driver.
Fil: Garces Correa, Maria Agustina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Orosco, Lorena Liliana. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
Drowsiness
Alert
Eeg
Wavelet
Neural Networks - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/32750
Ver los metadatos del registro completo
id |
CONICETDig_d674aedb35087581cbc35dfe28ececf4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/32750 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Automatic detection of drowsiness in EEG records based on multimodal analysisGarces Correa, Maria AgustinaOrosco, Lorena LilianaLaciar Leber, EricDrowsinessAlertEegWaveletNeural Networkshttps://purl.org/becyt/ford/2.6https://purl.org/becyt/ford/2https://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Drowsiness is one of the main causal factors in many traffic accidents due to the clear decline in the attention and recognition of danger drivers, diminishing vehicle-handling abilities. The aim of this research is to develop an automatic method to detect the drowsiness stage in EEG records using time, spectral and wavelet analysis. A total of 19 features were computed from only one EEG channel to differentiate the alertness and drowsiness stages. After a selection process based on lambda of Wilks criterion, 7 parameters were chosen to feed a Neural Network classifier. Eighteen EEG records were analyzed. The method gets 87.4% and 83.6% of alertness and drowsiness correct detections rates, respectively. The results obtained indicate that the parameters can differentiate both stages. The features are easy to calculate and can be obtained in real time. Those variables could be used in an automatic drowsiness detection system in vehicles, thereby decreasing the rate of accidents caused by sleepiness of the driver.Fil: Garces Correa, Maria Agustina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Orosco, Lorena Liliana. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2013-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32750Orosco, Lorena Liliana; Garces Correa, Maria Agustina; Laciar Leber, Eric; Automatic detection of drowsiness in EEG records based on multimodal analysis; Elsevier; Medical Engineering & Physics; 36; 2; 8-2013; 244-2491350-4533CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1350453313001690info:eu-repo/semantics/altIdentifier/doi/10.1016/j.medengphy.2013.07.011info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:42:41Zoai:ri.conicet.gov.ar:11336/32750instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:42:41.59CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Automatic detection of drowsiness in EEG records based on multimodal analysis |
title |
Automatic detection of drowsiness in EEG records based on multimodal analysis |
spellingShingle |
Automatic detection of drowsiness in EEG records based on multimodal analysis Garces Correa, Maria Agustina Drowsiness Alert Eeg Wavelet Neural Networks |
title_short |
Automatic detection of drowsiness in EEG records based on multimodal analysis |
title_full |
Automatic detection of drowsiness in EEG records based on multimodal analysis |
title_fullStr |
Automatic detection of drowsiness in EEG records based on multimodal analysis |
title_full_unstemmed |
Automatic detection of drowsiness in EEG records based on multimodal analysis |
title_sort |
Automatic detection of drowsiness in EEG records based on multimodal analysis |
dc.creator.none.fl_str_mv |
Garces Correa, Maria Agustina Orosco, Lorena Liliana Laciar Leber, Eric |
author |
Garces Correa, Maria Agustina |
author_facet |
Garces Correa, Maria Agustina Orosco, Lorena Liliana Laciar Leber, Eric |
author_role |
author |
author2 |
Orosco, Lorena Liliana Laciar Leber, Eric |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Drowsiness Alert Eeg Wavelet Neural Networks |
topic |
Drowsiness Alert Eeg Wavelet Neural Networks |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.6 https://purl.org/becyt/ford/2 https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Drowsiness is one of the main causal factors in many traffic accidents due to the clear decline in the attention and recognition of danger drivers, diminishing vehicle-handling abilities. The aim of this research is to develop an automatic method to detect the drowsiness stage in EEG records using time, spectral and wavelet analysis. A total of 19 features were computed from only one EEG channel to differentiate the alertness and drowsiness stages. After a selection process based on lambda of Wilks criterion, 7 parameters were chosen to feed a Neural Network classifier. Eighteen EEG records were analyzed. The method gets 87.4% and 83.6% of alertness and drowsiness correct detections rates, respectively. The results obtained indicate that the parameters can differentiate both stages. The features are easy to calculate and can be obtained in real time. Those variables could be used in an automatic drowsiness detection system in vehicles, thereby decreasing the rate of accidents caused by sleepiness of the driver. Fil: Garces Correa, Maria Agustina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Orosco, Lorena Liliana. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
Drowsiness is one of the main causal factors in many traffic accidents due to the clear decline in the attention and recognition of danger drivers, diminishing vehicle-handling abilities. The aim of this research is to develop an automatic method to detect the drowsiness stage in EEG records using time, spectral and wavelet analysis. A total of 19 features were computed from only one EEG channel to differentiate the alertness and drowsiness stages. After a selection process based on lambda of Wilks criterion, 7 parameters were chosen to feed a Neural Network classifier. Eighteen EEG records were analyzed. The method gets 87.4% and 83.6% of alertness and drowsiness correct detections rates, respectively. The results obtained indicate that the parameters can differentiate both stages. The features are easy to calculate and can be obtained in real time. Those variables could be used in an automatic drowsiness detection system in vehicles, thereby decreasing the rate of accidents caused by sleepiness of the driver. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/32750 Orosco, Lorena Liliana; Garces Correa, Maria Agustina; Laciar Leber, Eric; Automatic detection of drowsiness in EEG records based on multimodal analysis; Elsevier; Medical Engineering & Physics; 36; 2; 8-2013; 244-249 1350-4533 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/32750 |
identifier_str_mv |
Orosco, Lorena Liliana; Garces Correa, Maria Agustina; Laciar Leber, Eric; Automatic detection of drowsiness in EEG records based on multimodal analysis; Elsevier; Medical Engineering & Physics; 36; 2; 8-2013; 244-249 1350-4533 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1350453313001690 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.medengphy.2013.07.011 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614459801206784 |
score |
13.070432 |