Representability of convex sets by analytical linear inequality systems
- Autores
- Jaume, Daniel Alejandro; Puente, Rubén Oscar
- Año de publicación
- 2004
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The solution sets of analytical linear inequality systems posed in the Euclidean space form a transition class between the polyhedral convex sets and the closed convex sets, which are representable by means of linear continuous systems. The constraint systems of many semi-infinite programming problems are analytical, and their feasible sets retain geometric properties of the polyhedral sets which are useful in the numerical treatment of such kind of optimization problems. The Euclidean closed n-dimensional balls admit analytical representation if and only if n<3. This paper solves, in a negative way, the analytical representation problem for a wide class of n-dimensional convex sets, with n⩾3, which includes quasi-polyhedral sets and smooth convex bodies.
Fil: Jaume, Daniel Alejandro. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina
Fil: Puente, Rubén Oscar. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; Argentina - Materia
-
ANALYTICAL LINEAR INEQUALITY SYSTEMS
CLOSED CONVEX SETS
CONJUGATE FACESQUASI-POLYHEDRAL SETS
SMOOTH CONVEX BODIES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/239904
Ver los metadatos del registro completo
id |
CONICETDig_4ab771244255e461e1fc8308ad5f29b9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/239904 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Representability of convex sets by analytical linear inequality systemsJaume, Daniel AlejandroPuente, Rubén OscarANALYTICAL LINEAR INEQUALITY SYSTEMSCLOSED CONVEX SETSCONJUGATE FACESQUASI-POLYHEDRAL SETSSMOOTH CONVEX BODIEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The solution sets of analytical linear inequality systems posed in the Euclidean space form a transition class between the polyhedral convex sets and the closed convex sets, which are representable by means of linear continuous systems. The constraint systems of many semi-infinite programming problems are analytical, and their feasible sets retain geometric properties of the polyhedral sets which are useful in the numerical treatment of such kind of optimization problems. The Euclidean closed n-dimensional balls admit analytical representation if and only if n<3. This paper solves, in a negative way, the analytical representation problem for a wide class of n-dimensional convex sets, with n⩾3, which includes quasi-polyhedral sets and smooth convex bodies.Fil: Jaume, Daniel Alejandro. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; ArgentinaFil: Puente, Rubén Oscar. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; ArgentinaElsevier Science Inc.2004-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/239904Jaume, Daniel Alejandro; Puente, Rubén Oscar; Representability of convex sets by analytical linear inequality systems; Elsevier Science Inc.; Linear Algebra and its Applications; 380; 12-2004; 135-1500024-3795CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2003.09.018info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379503008103info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:27Zoai:ri.conicet.gov.ar:11336/239904instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:28.068CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Representability of convex sets by analytical linear inequality systems |
title |
Representability of convex sets by analytical linear inequality systems |
spellingShingle |
Representability of convex sets by analytical linear inequality systems Jaume, Daniel Alejandro ANALYTICAL LINEAR INEQUALITY SYSTEMS CLOSED CONVEX SETS CONJUGATE FACESQUASI-POLYHEDRAL SETS SMOOTH CONVEX BODIES |
title_short |
Representability of convex sets by analytical linear inequality systems |
title_full |
Representability of convex sets by analytical linear inequality systems |
title_fullStr |
Representability of convex sets by analytical linear inequality systems |
title_full_unstemmed |
Representability of convex sets by analytical linear inequality systems |
title_sort |
Representability of convex sets by analytical linear inequality systems |
dc.creator.none.fl_str_mv |
Jaume, Daniel Alejandro Puente, Rubén Oscar |
author |
Jaume, Daniel Alejandro |
author_facet |
Jaume, Daniel Alejandro Puente, Rubén Oscar |
author_role |
author |
author2 |
Puente, Rubén Oscar |
author2_role |
author |
dc.subject.none.fl_str_mv |
ANALYTICAL LINEAR INEQUALITY SYSTEMS CLOSED CONVEX SETS CONJUGATE FACESQUASI-POLYHEDRAL SETS SMOOTH CONVEX BODIES |
topic |
ANALYTICAL LINEAR INEQUALITY SYSTEMS CLOSED CONVEX SETS CONJUGATE FACESQUASI-POLYHEDRAL SETS SMOOTH CONVEX BODIES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The solution sets of analytical linear inequality systems posed in the Euclidean space form a transition class between the polyhedral convex sets and the closed convex sets, which are representable by means of linear continuous systems. The constraint systems of many semi-infinite programming problems are analytical, and their feasible sets retain geometric properties of the polyhedral sets which are useful in the numerical treatment of such kind of optimization problems. The Euclidean closed n-dimensional balls admit analytical representation if and only if n<3. This paper solves, in a negative way, the analytical representation problem for a wide class of n-dimensional convex sets, with n⩾3, which includes quasi-polyhedral sets and smooth convex bodies. Fil: Jaume, Daniel Alejandro. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis; Argentina Fil: Puente, Rubén Oscar. Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Departamento de Matemáticas; Argentina |
description |
The solution sets of analytical linear inequality systems posed in the Euclidean space form a transition class between the polyhedral convex sets and the closed convex sets, which are representable by means of linear continuous systems. The constraint systems of many semi-infinite programming problems are analytical, and their feasible sets retain geometric properties of the polyhedral sets which are useful in the numerical treatment of such kind of optimization problems. The Euclidean closed n-dimensional balls admit analytical representation if and only if n<3. This paper solves, in a negative way, the analytical representation problem for a wide class of n-dimensional convex sets, with n⩾3, which includes quasi-polyhedral sets and smooth convex bodies. |
publishDate |
2004 |
dc.date.none.fl_str_mv |
2004-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/239904 Jaume, Daniel Alejandro; Puente, Rubén Oscar; Representability of convex sets by analytical linear inequality systems; Elsevier Science Inc.; Linear Algebra and its Applications; 380; 12-2004; 135-150 0024-3795 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/239904 |
identifier_str_mv |
Jaume, Daniel Alejandro; Puente, Rubén Oscar; Representability of convex sets by analytical linear inequality systems; Elsevier Science Inc.; Linear Algebra and its Applications; 380; 12-2004; 135-150 0024-3795 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2003.09.018 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379503008103 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Inc. |
publisher.none.fl_str_mv |
Elsevier Science Inc. |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269226781376512 |
score |
13.13397 |