An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives

Autores
Barrios, Melani; Reyero, Gabriela Fernanda
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we present advances in fractional variational problems with a Lagrangian depending on Caputo fractional and classical derivatives. New formulations of the fractional Euler-Lagrange equation are shown for the basic and isoperimetric problems, one in an integral form, and the other that depends only on the Caputo derivatives. The advantage is that Caputo derivatives are more appropriate for modeling problems than the Riemann-Liouville derivatives and makes the calculations easier to solve because, in some cases, its behavior is similar to the behavior of classical derivatives. Finally, a new exact solution for a particular variational problem is obtained.
Fil: Barrios, Melani. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Fil: Reyero, Gabriela Fernanda. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
FRACTIONAL DERIVATIVES AND INTEGRALS
FRACTIONAL VARIATIONAL PROBLEMS
EULER-LAGRANGE FRACTIONAL EQUATIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/158939

id CONICETDig_3fdcb37817f3cded0a9edec5a445b8db
oai_identifier_str oai:ri.conicet.gov.ar:11336/158939
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical DerivativesBarrios, MelaniReyero, Gabriela FernandaFRACTIONAL DERIVATIVES AND INTEGRALSFRACTIONAL VARIATIONAL PROBLEMSEULER-LAGRANGE FRACTIONAL EQUATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we present advances in fractional variational problems with a Lagrangian depending on Caputo fractional and classical derivatives. New formulations of the fractional Euler-Lagrange equation are shown for the basic and isoperimetric problems, one in an integral form, and the other that depends only on the Caputo derivatives. The advantage is that Caputo derivatives are more appropriate for modeling problems than the Riemann-Liouville derivatives and makes the calculations easier to solve because, in some cases, its behavior is similar to the behavior of classical derivatives. Finally, a new exact solution for a particular variational problem is obtained.Fil: Barrios, Melani. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Reyero, Gabriela Fernanda. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaInternational Academic Press2020-05-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/158939Barrios, Melani; Reyero, Gabriela Fernanda; An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives; International Academic Press; Statistics, Optimization & Information Computing; 8; 2; 18-5-2020; 590-6012310-50702311-004XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.iapress.org/index.php/soic/article/view/865info:eu-repo/semantics/altIdentifier/doi/10.19139/soic-2310-5070-865info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:24Zoai:ri.conicet.gov.ar:11336/158939instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:25.142CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives
title An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives
spellingShingle An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives
Barrios, Melani
FRACTIONAL DERIVATIVES AND INTEGRALS
FRACTIONAL VARIATIONAL PROBLEMS
EULER-LAGRANGE FRACTIONAL EQUATIONS
title_short An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives
title_full An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives
title_fullStr An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives
title_full_unstemmed An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives
title_sort An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives
dc.creator.none.fl_str_mv Barrios, Melani
Reyero, Gabriela Fernanda
author Barrios, Melani
author_facet Barrios, Melani
Reyero, Gabriela Fernanda
author_role author
author2 Reyero, Gabriela Fernanda
author2_role author
dc.subject.none.fl_str_mv FRACTIONAL DERIVATIVES AND INTEGRALS
FRACTIONAL VARIATIONAL PROBLEMS
EULER-LAGRANGE FRACTIONAL EQUATIONS
topic FRACTIONAL DERIVATIVES AND INTEGRALS
FRACTIONAL VARIATIONAL PROBLEMS
EULER-LAGRANGE FRACTIONAL EQUATIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we present advances in fractional variational problems with a Lagrangian depending on Caputo fractional and classical derivatives. New formulations of the fractional Euler-Lagrange equation are shown for the basic and isoperimetric problems, one in an integral form, and the other that depends only on the Caputo derivatives. The advantage is that Caputo derivatives are more appropriate for modeling problems than the Riemann-Liouville derivatives and makes the calculations easier to solve because, in some cases, its behavior is similar to the behavior of classical derivatives. Finally, a new exact solution for a particular variational problem is obtained.
Fil: Barrios, Melani. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Fil: Reyero, Gabriela Fernanda. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description In this paper we present advances in fractional variational problems with a Lagrangian depending on Caputo fractional and classical derivatives. New formulations of the fractional Euler-Lagrange equation are shown for the basic and isoperimetric problems, one in an integral form, and the other that depends only on the Caputo derivatives. The advantage is that Caputo derivatives are more appropriate for modeling problems than the Riemann-Liouville derivatives and makes the calculations easier to solve because, in some cases, its behavior is similar to the behavior of classical derivatives. Finally, a new exact solution for a particular variational problem is obtained.
publishDate 2020
dc.date.none.fl_str_mv 2020-05-18
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/158939
Barrios, Melani; Reyero, Gabriela Fernanda; An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives; International Academic Press; Statistics, Optimization & Information Computing; 8; 2; 18-5-2020; 590-601
2310-5070
2311-004X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/158939
identifier_str_mv Barrios, Melani; Reyero, Gabriela Fernanda; An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives; International Academic Press; Statistics, Optimization & Information Computing; 8; 2; 18-5-2020; 590-601
2310-5070
2311-004X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.iapress.org/index.php/soic/article/view/865
info:eu-repo/semantics/altIdentifier/doi/10.19139/soic-2310-5070-865
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv International Academic Press
publisher.none.fl_str_mv International Academic Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268922846380032
score 13.13397