An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives
- Autores
- Barrios, Melani; Reyero, Gabriela Fernanda
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we present advances in fractional variational problems with a Lagrangian depending on Caputo fractional and classical derivatives. New formulations of the fractional Euler-Lagrange equation are shown for the basic and isoperimetric problems, one in an integral form, and the other that depends only on the Caputo derivatives. The advantage is that Caputo derivatives are more appropriate for modeling problems than the Riemann-Liouville derivatives and makes the calculations easier to solve because, in some cases, its behavior is similar to the behavior of classical derivatives. Finally, a new exact solution for a particular variational problem is obtained.
Fil: Barrios, Melani. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina
Fil: Reyero, Gabriela Fernanda. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
FRACTIONAL DERIVATIVES AND INTEGRALS
FRACTIONAL VARIATIONAL PROBLEMS
EULER-LAGRANGE FRACTIONAL EQUATIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/158939
Ver los metadatos del registro completo
id |
CONICETDig_3fdcb37817f3cded0a9edec5a445b8db |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/158939 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical DerivativesBarrios, MelaniReyero, Gabriela FernandaFRACTIONAL DERIVATIVES AND INTEGRALSFRACTIONAL VARIATIONAL PROBLEMSEULER-LAGRANGE FRACTIONAL EQUATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we present advances in fractional variational problems with a Lagrangian depending on Caputo fractional and classical derivatives. New formulations of the fractional Euler-Lagrange equation are shown for the basic and isoperimetric problems, one in an integral form, and the other that depends only on the Caputo derivatives. The advantage is that Caputo derivatives are more appropriate for modeling problems than the Riemann-Liouville derivatives and makes the calculations easier to solve because, in some cases, its behavior is similar to the behavior of classical derivatives. Finally, a new exact solution for a particular variational problem is obtained.Fil: Barrios, Melani. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Reyero, Gabriela Fernanda. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaInternational Academic Press2020-05-18info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/158939Barrios, Melani; Reyero, Gabriela Fernanda; An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives; International Academic Press; Statistics, Optimization & Information Computing; 8; 2; 18-5-2020; 590-6012310-50702311-004XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.iapress.org/index.php/soic/article/view/865info:eu-repo/semantics/altIdentifier/doi/10.19139/soic-2310-5070-865info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:24Zoai:ri.conicet.gov.ar:11336/158939instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:25.142CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives |
title |
An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives |
spellingShingle |
An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives Barrios, Melani FRACTIONAL DERIVATIVES AND INTEGRALS FRACTIONAL VARIATIONAL PROBLEMS EULER-LAGRANGE FRACTIONAL EQUATIONS |
title_short |
An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives |
title_full |
An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives |
title_fullStr |
An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives |
title_full_unstemmed |
An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives |
title_sort |
An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives |
dc.creator.none.fl_str_mv |
Barrios, Melani Reyero, Gabriela Fernanda |
author |
Barrios, Melani |
author_facet |
Barrios, Melani Reyero, Gabriela Fernanda |
author_role |
author |
author2 |
Reyero, Gabriela Fernanda |
author2_role |
author |
dc.subject.none.fl_str_mv |
FRACTIONAL DERIVATIVES AND INTEGRALS FRACTIONAL VARIATIONAL PROBLEMS EULER-LAGRANGE FRACTIONAL EQUATIONS |
topic |
FRACTIONAL DERIVATIVES AND INTEGRALS FRACTIONAL VARIATIONAL PROBLEMS EULER-LAGRANGE FRACTIONAL EQUATIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we present advances in fractional variational problems with a Lagrangian depending on Caputo fractional and classical derivatives. New formulations of the fractional Euler-Lagrange equation are shown for the basic and isoperimetric problems, one in an integral form, and the other that depends only on the Caputo derivatives. The advantage is that Caputo derivatives are more appropriate for modeling problems than the Riemann-Liouville derivatives and makes the calculations easier to solve because, in some cases, its behavior is similar to the behavior of classical derivatives. Finally, a new exact solution for a particular variational problem is obtained. Fil: Barrios, Melani. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina Fil: Reyero, Gabriela Fernanda. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
In this paper we present advances in fractional variational problems with a Lagrangian depending on Caputo fractional and classical derivatives. New formulations of the fractional Euler-Lagrange equation are shown for the basic and isoperimetric problems, one in an integral form, and the other that depends only on the Caputo derivatives. The advantage is that Caputo derivatives are more appropriate for modeling problems than the Riemann-Liouville derivatives and makes the calculations easier to solve because, in some cases, its behavior is similar to the behavior of classical derivatives. Finally, a new exact solution for a particular variational problem is obtained. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-05-18 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/158939 Barrios, Melani; Reyero, Gabriela Fernanda; An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives; International Academic Press; Statistics, Optimization & Information Computing; 8; 2; 18-5-2020; 590-601 2310-5070 2311-004X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/158939 |
identifier_str_mv |
Barrios, Melani; Reyero, Gabriela Fernanda; An Euler-Lagrange Equation only Depending on Derivatives of Caputo for Fractional Variational Problems with Classical Derivatives; International Academic Press; Statistics, Optimization & Information Computing; 8; 2; 18-5-2020; 590-601 2310-5070 2311-004X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.iapress.org/index.php/soic/article/view/865 info:eu-repo/semantics/altIdentifier/doi/10.19139/soic-2310-5070-865 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
International Academic Press |
publisher.none.fl_str_mv |
International Academic Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268922846380032 |
score |
13.13397 |