Mixed Bohr radius in several variables
- Autores
- Galicer, Daniel Eric; Mansilla, Martin Ignacio; Muro, Luis Santiago Miguel
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let K(Bℓnp , Bℓnq ) be the n-dimensional (p, q)-Bohr radius for holomorphic functions on Cn. That is, K(Bℓnp , Bℓnq ) denotes the greatest number r ≥ 0 such that for every entire function f(z) = Σ α aαzα in n-complex variables, we have the following (mixed) Bohr-type inequality: sup Σ |aαzα| ≤ sup |f(z)|, z∈r·Bℓn z∈Bℓn α q p where Bℓn denotes the closed unit ball of the n-dimensional sequence space ℓn r . r For every 1 ≤ p, q ≤ ∞, we exhibit the exact asymptotic growth of the (p, q)-Bohr radius as n (the number of variables) goes to infinity.
Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Mansilla, Martin Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
BOHR RADIUS
DOMAINS OF CONVERGENCE FOR MONOMIAL EXPANSIONS
HOMOGENEOUS POLYNOMIALS
POWER SERIES
UNCONDITIONAL BASES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/117679
Ver los metadatos del registro completo
id |
CONICETDig_4a72558f2a5eaa7585ab86b7a94759ca |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/117679 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Mixed Bohr radius in several variablesGalicer, Daniel EricMansilla, Martin IgnacioMuro, Luis Santiago MiguelBOHR RADIUSDOMAINS OF CONVERGENCE FOR MONOMIAL EXPANSIONSHOMOGENEOUS POLYNOMIALSPOWER SERIESUNCONDITIONAL BASEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let K(Bℓnp , Bℓnq ) be the n-dimensional (p, q)-Bohr radius for holomorphic functions on Cn. That is, K(Bℓnp , Bℓnq ) denotes the greatest number r ≥ 0 such that for every entire function f(z) = Σ α aαzα in n-complex variables, we have the following (mixed) Bohr-type inequality: sup Σ |aαzα| ≤ sup |f(z)|, z∈r·Bℓn z∈Bℓn α q p where Bℓn denotes the closed unit ball of the n-dimensional sequence space ℓn r . r For every 1 ≤ p, q ≤ ∞, we exhibit the exact asymptotic growth of the (p, q)-Bohr radius as n (the number of variables) goes to infinity.Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Mansilla, Martin Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaAmerican Mathematical Society2019-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/zipapplication/pdfhttp://hdl.handle.net/11336/117679Galicer, Daniel Eric; Mansilla, Martin Ignacio; Muro, Luis Santiago Miguel; Mixed Bohr radius in several variables; American Mathematical Society; Transactions Of The American Mathematical Society; 373; 2; 11-2019; 777-7960002-9947CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1090/tran/7870info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/tran/2020-373-02/S0002-9947-2019-07870-4/info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1712.08077info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:19:29Zoai:ri.conicet.gov.ar:11336/117679instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:19:30.205CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Mixed Bohr radius in several variables |
title |
Mixed Bohr radius in several variables |
spellingShingle |
Mixed Bohr radius in several variables Galicer, Daniel Eric BOHR RADIUS DOMAINS OF CONVERGENCE FOR MONOMIAL EXPANSIONS HOMOGENEOUS POLYNOMIALS POWER SERIES UNCONDITIONAL BASES |
title_short |
Mixed Bohr radius in several variables |
title_full |
Mixed Bohr radius in several variables |
title_fullStr |
Mixed Bohr radius in several variables |
title_full_unstemmed |
Mixed Bohr radius in several variables |
title_sort |
Mixed Bohr radius in several variables |
dc.creator.none.fl_str_mv |
Galicer, Daniel Eric Mansilla, Martin Ignacio Muro, Luis Santiago Miguel |
author |
Galicer, Daniel Eric |
author_facet |
Galicer, Daniel Eric Mansilla, Martin Ignacio Muro, Luis Santiago Miguel |
author_role |
author |
author2 |
Mansilla, Martin Ignacio Muro, Luis Santiago Miguel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BOHR RADIUS DOMAINS OF CONVERGENCE FOR MONOMIAL EXPANSIONS HOMOGENEOUS POLYNOMIALS POWER SERIES UNCONDITIONAL BASES |
topic |
BOHR RADIUS DOMAINS OF CONVERGENCE FOR MONOMIAL EXPANSIONS HOMOGENEOUS POLYNOMIALS POWER SERIES UNCONDITIONAL BASES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let K(Bℓnp , Bℓnq ) be the n-dimensional (p, q)-Bohr radius for holomorphic functions on Cn. That is, K(Bℓnp , Bℓnq ) denotes the greatest number r ≥ 0 such that for every entire function f(z) = Σ α aαzα in n-complex variables, we have the following (mixed) Bohr-type inequality: sup Σ |aαzα| ≤ sup |f(z)|, z∈r·Bℓn z∈Bℓn α q p where Bℓn denotes the closed unit ball of the n-dimensional sequence space ℓn r . r For every 1 ≤ p, q ≤ ∞, we exhibit the exact asymptotic growth of the (p, q)-Bohr radius as n (the number of variables) goes to infinity. Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Mansilla, Martin Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Muro, Luis Santiago Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
Let K(Bℓnp , Bℓnq ) be the n-dimensional (p, q)-Bohr radius for holomorphic functions on Cn. That is, K(Bℓnp , Bℓnq ) denotes the greatest number r ≥ 0 such that for every entire function f(z) = Σ α aαzα in n-complex variables, we have the following (mixed) Bohr-type inequality: sup Σ |aαzα| ≤ sup |f(z)|, z∈r·Bℓn z∈Bℓn α q p where Bℓn denotes the closed unit ball of the n-dimensional sequence space ℓn r . r For every 1 ≤ p, q ≤ ∞, we exhibit the exact asymptotic growth of the (p, q)-Bohr radius as n (the number of variables) goes to infinity. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-11 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/117679 Galicer, Daniel Eric; Mansilla, Martin Ignacio; Muro, Luis Santiago Miguel; Mixed Bohr radius in several variables; American Mathematical Society; Transactions Of The American Mathematical Society; 373; 2; 11-2019; 777-796 0002-9947 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/117679 |
identifier_str_mv |
Galicer, Daniel Eric; Mansilla, Martin Ignacio; Muro, Luis Santiago Miguel; Mixed Bohr radius in several variables; American Mathematical Society; Transactions Of The American Mathematical Society; 373; 2; 11-2019; 777-796 0002-9947 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1090/tran/7870 info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/tran/2020-373-02/S0002-9947-2019-07870-4/ info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1712.08077 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/zip application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614166691708928 |
score |
13.070432 |