Aportes de la física en el desarrollo de bioadsorbentes para descontaminar agua
- Autores
- Padilla, Eduardo Rubén; Perez, Roberto Daniel; Maturano, Carmen; Delfino, Ana Victoria; Ferrari, Ana; Bongiovanni, Guillermina Azucena
- Año de publicación
- 2021
- Idioma
- español castellano
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- La contaminación del agua con metales pesados representa un riesgo serio para la salud porque son elementos tóxicos, generalmente cancerígenos cuando son consumidos en dosis bajas, pero en forma crónica. Uno de los más relevantes es el arsénico (As) porque alrededor de 4 millones de argentinos (más de 200 millones en el mundo, en más de 100 países 1) consumen agua contaminada con este tóxico. Existen varios métodos de remediación, pero son costosos, requieren personal entrenado o utilizan polímeros sintéticos que resultan también tóxicos. Además, suelen generar grandes volúmenes de desechos químicos de difícil disposición final. En los últimos años hemos estudiado la bioacumulación de As en microorganismos extremófilos autóctonos utilizando diversas técnicas que permiten identificar y cuantificar simultáneamente, numerosos elementos en las muestras. Mediante medidas de la Emisión de Fluorescencia en muestras irradiadas con Rayos X (micro-SRXRF, STXRF-XANES, TXRF, micro-XRF) encontramos que los microorganismos colectados en su hábitat contienen 31 µg de As por g de peso seco en promedio, con una alta capacidad de retener también Cr, Mn, Fe y Sr 2,3. Los análisis por SRXRF-XANES realizados en el Laboratorio Nacional de Luz Sincrotrón, Campinas, Brasil sugirieron que gran parte del As ambiental (en agua) es retenido en la cubierta externa 3. ObjetivosOptimizar la proliferación in vitro de microrganismos extremófilos de Neuquén para la obtención de biopolímeros con capacidad de adsorber contaminantes acuososMateriales y métodosCultivo in vitro de microorganismos en diferentes condiciones; análisis morfológicos y por coloración usando microscopio óptico y de fluorescencia; Fluorescencia de Rayos X (XRF y TXRF) realizados en el IFEG para estudiar bioacumulación de As y metales pesados, así como cuantificación de estos elementos en aguaResultadosObservamos, que en su hábitat, estos microorganismos presentan diferente coloración, desde blancas a verde oscuro (Figura 1, a). Los estudios realizados por microscopía indicaron que se trata principalmente de cianobacterias, las cuales presentan una pared celular que sería la responsable de retener los contaminantes ambientales. Gracias a los estudios por Fluorescencia de Rayos X realizados en el IFEG (MDL 0.25 µg/g de As) se encontró que las colonias más oscuras poseen mayor capacidad de acumulación de As (hasta 50 µg de As por g de peso seco). Observamos que el pH, temperatura e iluminación afectan el crecimiento in vitro de estos microorganismos. Cuando fueron incubados en condiciones óptimas y en medios de cultivo con 0.25 µg/mL de As (concentración promedio de aguas naturalmente contaminadas), encontramos que la concentración de este metaloide en el medio de cultivo disminuyó por debajo del límite de detección de la técnica TXRF (MDL 0.1 µg/mL de As), sugiriendo capacidad remediadora. ConclusiónConcluimos que la técnica Fluorescencia de Rayos X ha sido una herramienta valiosa para estudiar la bioacumulación y remediación de As y metales pesados, por lo que se utilizará durante la producción de biomasa bacteriana y la subsiguiente purificación de los biopolímeros de su cubierta, para el desarrollo de resinas naturales de purificación de agua.
Fil: Padilla, Eduardo Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Perez, Roberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Maturano, Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Delfino, Ana Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Ferrari, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Bongiovanni, Guillermina Azucena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
106º Reunión Anual de la Asociación Física Argentina
Córdoba
Argentina
Asociación Física Argentina - Materia
-
Descontaminación
Arsénico
Cianobacterias
Fluorescencia de rayos x - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/204172
Ver los metadatos del registro completo
id |
CONICETDig_4a71c34f8db85f4a21c5a65c323d7221 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/204172 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Aportes de la física en el desarrollo de bioadsorbentes para descontaminar aguaPadilla, Eduardo RubénPerez, Roberto DanielMaturano, CarmenDelfino, Ana VictoriaFerrari, AnaBongiovanni, Guillermina AzucenaDescontaminaciónArsénicoCianobacteriasFluorescencia de rayos xhttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1La contaminación del agua con metales pesados representa un riesgo serio para la salud porque son elementos tóxicos, generalmente cancerígenos cuando son consumidos en dosis bajas, pero en forma crónica. Uno de los más relevantes es el arsénico (As) porque alrededor de 4 millones de argentinos (más de 200 millones en el mundo, en más de 100 países 1) consumen agua contaminada con este tóxico. Existen varios métodos de remediación, pero son costosos, requieren personal entrenado o utilizan polímeros sintéticos que resultan también tóxicos. Además, suelen generar grandes volúmenes de desechos químicos de difícil disposición final. En los últimos años hemos estudiado la bioacumulación de As en microorganismos extremófilos autóctonos utilizando diversas técnicas que permiten identificar y cuantificar simultáneamente, numerosos elementos en las muestras. Mediante medidas de la Emisión de Fluorescencia en muestras irradiadas con Rayos X (micro-SRXRF, STXRF-XANES, TXRF, micro-XRF) encontramos que los microorganismos colectados en su hábitat contienen 31 µg de As por g de peso seco en promedio, con una alta capacidad de retener también Cr, Mn, Fe y Sr 2,3. Los análisis por SRXRF-XANES realizados en el Laboratorio Nacional de Luz Sincrotrón, Campinas, Brasil sugirieron que gran parte del As ambiental (en agua) es retenido en la cubierta externa 3. ObjetivosOptimizar la proliferación in vitro de microrganismos extremófilos de Neuquén para la obtención de biopolímeros con capacidad de adsorber contaminantes acuososMateriales y métodosCultivo in vitro de microorganismos en diferentes condiciones; análisis morfológicos y por coloración usando microscopio óptico y de fluorescencia; Fluorescencia de Rayos X (XRF y TXRF) realizados en el IFEG para estudiar bioacumulación de As y metales pesados, así como cuantificación de estos elementos en aguaResultadosObservamos, que en su hábitat, estos microorganismos presentan diferente coloración, desde blancas a verde oscuro (Figura 1, a). Los estudios realizados por microscopía indicaron que se trata principalmente de cianobacterias, las cuales presentan una pared celular que sería la responsable de retener los contaminantes ambientales. Gracias a los estudios por Fluorescencia de Rayos X realizados en el IFEG (MDL 0.25 µg/g de As) se encontró que las colonias más oscuras poseen mayor capacidad de acumulación de As (hasta 50 µg de As por g de peso seco). Observamos que el pH, temperatura e iluminación afectan el crecimiento in vitro de estos microorganismos. Cuando fueron incubados en condiciones óptimas y en medios de cultivo con 0.25 µg/mL de As (concentración promedio de aguas naturalmente contaminadas), encontramos que la concentración de este metaloide en el medio de cultivo disminuyó por debajo del límite de detección de la técnica TXRF (MDL 0.1 µg/mL de As), sugiriendo capacidad remediadora. ConclusiónConcluimos que la técnica Fluorescencia de Rayos X ha sido una herramienta valiosa para estudiar la bioacumulación y remediación de As y metales pesados, por lo que se utilizará durante la producción de biomasa bacteriana y la subsiguiente purificación de los biopolímeros de su cubierta, para el desarrollo de resinas naturales de purificación de agua.Fil: Padilla, Eduardo Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Perez, Roberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Maturano, Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Delfino, Ana Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Ferrari, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Bongiovanni, Guillermina Azucena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina106º Reunión Anual de la Asociación Física ArgentinaCórdobaArgentinaAsociación Física ArgentinaAsociación Física Argentina2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectReuniónBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/204172Aportes de la física en el desarrollo de bioadsorbentes para descontaminar agua; 106º Reunión Anual de la Asociación Física Argentina; Córdoba; Argentina; 2021; 3-4CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://rafa.fisica.org.ar/links-importantes/libro-de-resumenes/Nacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:13:31Zoai:ri.conicet.gov.ar:11336/204172instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:13:31.51CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Aportes de la física en el desarrollo de bioadsorbentes para descontaminar agua |
title |
Aportes de la física en el desarrollo de bioadsorbentes para descontaminar agua |
spellingShingle |
Aportes de la física en el desarrollo de bioadsorbentes para descontaminar agua Padilla, Eduardo Rubén Descontaminación Arsénico Cianobacterias Fluorescencia de rayos x |
title_short |
Aportes de la física en el desarrollo de bioadsorbentes para descontaminar agua |
title_full |
Aportes de la física en el desarrollo de bioadsorbentes para descontaminar agua |
title_fullStr |
Aportes de la física en el desarrollo de bioadsorbentes para descontaminar agua |
title_full_unstemmed |
Aportes de la física en el desarrollo de bioadsorbentes para descontaminar agua |
title_sort |
Aportes de la física en el desarrollo de bioadsorbentes para descontaminar agua |
dc.creator.none.fl_str_mv |
Padilla, Eduardo Rubén Perez, Roberto Daniel Maturano, Carmen Delfino, Ana Victoria Ferrari, Ana Bongiovanni, Guillermina Azucena |
author |
Padilla, Eduardo Rubén |
author_facet |
Padilla, Eduardo Rubén Perez, Roberto Daniel Maturano, Carmen Delfino, Ana Victoria Ferrari, Ana Bongiovanni, Guillermina Azucena |
author_role |
author |
author2 |
Perez, Roberto Daniel Maturano, Carmen Delfino, Ana Victoria Ferrari, Ana Bongiovanni, Guillermina Azucena |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
Descontaminación Arsénico Cianobacterias Fluorescencia de rayos x |
topic |
Descontaminación Arsénico Cianobacterias Fluorescencia de rayos x |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.7 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
La contaminación del agua con metales pesados representa un riesgo serio para la salud porque son elementos tóxicos, generalmente cancerígenos cuando son consumidos en dosis bajas, pero en forma crónica. Uno de los más relevantes es el arsénico (As) porque alrededor de 4 millones de argentinos (más de 200 millones en el mundo, en más de 100 países 1) consumen agua contaminada con este tóxico. Existen varios métodos de remediación, pero son costosos, requieren personal entrenado o utilizan polímeros sintéticos que resultan también tóxicos. Además, suelen generar grandes volúmenes de desechos químicos de difícil disposición final. En los últimos años hemos estudiado la bioacumulación de As en microorganismos extremófilos autóctonos utilizando diversas técnicas que permiten identificar y cuantificar simultáneamente, numerosos elementos en las muestras. Mediante medidas de la Emisión de Fluorescencia en muestras irradiadas con Rayos X (micro-SRXRF, STXRF-XANES, TXRF, micro-XRF) encontramos que los microorganismos colectados en su hábitat contienen 31 µg de As por g de peso seco en promedio, con una alta capacidad de retener también Cr, Mn, Fe y Sr 2,3. Los análisis por SRXRF-XANES realizados en el Laboratorio Nacional de Luz Sincrotrón, Campinas, Brasil sugirieron que gran parte del As ambiental (en agua) es retenido en la cubierta externa 3. ObjetivosOptimizar la proliferación in vitro de microrganismos extremófilos de Neuquén para la obtención de biopolímeros con capacidad de adsorber contaminantes acuososMateriales y métodosCultivo in vitro de microorganismos en diferentes condiciones; análisis morfológicos y por coloración usando microscopio óptico y de fluorescencia; Fluorescencia de Rayos X (XRF y TXRF) realizados en el IFEG para estudiar bioacumulación de As y metales pesados, así como cuantificación de estos elementos en aguaResultadosObservamos, que en su hábitat, estos microorganismos presentan diferente coloración, desde blancas a verde oscuro (Figura 1, a). Los estudios realizados por microscopía indicaron que se trata principalmente de cianobacterias, las cuales presentan una pared celular que sería la responsable de retener los contaminantes ambientales. Gracias a los estudios por Fluorescencia de Rayos X realizados en el IFEG (MDL 0.25 µg/g de As) se encontró que las colonias más oscuras poseen mayor capacidad de acumulación de As (hasta 50 µg de As por g de peso seco). Observamos que el pH, temperatura e iluminación afectan el crecimiento in vitro de estos microorganismos. Cuando fueron incubados en condiciones óptimas y en medios de cultivo con 0.25 µg/mL de As (concentración promedio de aguas naturalmente contaminadas), encontramos que la concentración de este metaloide en el medio de cultivo disminuyó por debajo del límite de detección de la técnica TXRF (MDL 0.1 µg/mL de As), sugiriendo capacidad remediadora. ConclusiónConcluimos que la técnica Fluorescencia de Rayos X ha sido una herramienta valiosa para estudiar la bioacumulación y remediación de As y metales pesados, por lo que se utilizará durante la producción de biomasa bacteriana y la subsiguiente purificación de los biopolímeros de su cubierta, para el desarrollo de resinas naturales de purificación de agua. Fil: Padilla, Eduardo Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina Fil: Perez, Roberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina Fil: Maturano, Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina Fil: Delfino, Ana Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina Fil: Ferrari, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina Fil: Bongiovanni, Guillermina Azucena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina 106º Reunión Anual de la Asociación Física Argentina Córdoba Argentina Asociación Física Argentina |
description |
La contaminación del agua con metales pesados representa un riesgo serio para la salud porque son elementos tóxicos, generalmente cancerígenos cuando son consumidos en dosis bajas, pero en forma crónica. Uno de los más relevantes es el arsénico (As) porque alrededor de 4 millones de argentinos (más de 200 millones en el mundo, en más de 100 países 1) consumen agua contaminada con este tóxico. Existen varios métodos de remediación, pero son costosos, requieren personal entrenado o utilizan polímeros sintéticos que resultan también tóxicos. Además, suelen generar grandes volúmenes de desechos químicos de difícil disposición final. En los últimos años hemos estudiado la bioacumulación de As en microorganismos extremófilos autóctonos utilizando diversas técnicas que permiten identificar y cuantificar simultáneamente, numerosos elementos en las muestras. Mediante medidas de la Emisión de Fluorescencia en muestras irradiadas con Rayos X (micro-SRXRF, STXRF-XANES, TXRF, micro-XRF) encontramos que los microorganismos colectados en su hábitat contienen 31 µg de As por g de peso seco en promedio, con una alta capacidad de retener también Cr, Mn, Fe y Sr 2,3. Los análisis por SRXRF-XANES realizados en el Laboratorio Nacional de Luz Sincrotrón, Campinas, Brasil sugirieron que gran parte del As ambiental (en agua) es retenido en la cubierta externa 3. ObjetivosOptimizar la proliferación in vitro de microrganismos extremófilos de Neuquén para la obtención de biopolímeros con capacidad de adsorber contaminantes acuososMateriales y métodosCultivo in vitro de microorganismos en diferentes condiciones; análisis morfológicos y por coloración usando microscopio óptico y de fluorescencia; Fluorescencia de Rayos X (XRF y TXRF) realizados en el IFEG para estudiar bioacumulación de As y metales pesados, así como cuantificación de estos elementos en aguaResultadosObservamos, que en su hábitat, estos microorganismos presentan diferente coloración, desde blancas a verde oscuro (Figura 1, a). Los estudios realizados por microscopía indicaron que se trata principalmente de cianobacterias, las cuales presentan una pared celular que sería la responsable de retener los contaminantes ambientales. Gracias a los estudios por Fluorescencia de Rayos X realizados en el IFEG (MDL 0.25 µg/g de As) se encontró que las colonias más oscuras poseen mayor capacidad de acumulación de As (hasta 50 µg de As por g de peso seco). Observamos que el pH, temperatura e iluminación afectan el crecimiento in vitro de estos microorganismos. Cuando fueron incubados en condiciones óptimas y en medios de cultivo con 0.25 µg/mL de As (concentración promedio de aguas naturalmente contaminadas), encontramos que la concentración de este metaloide en el medio de cultivo disminuyó por debajo del límite de detección de la técnica TXRF (MDL 0.1 µg/mL de As), sugiriendo capacidad remediadora. ConclusiónConcluimos que la técnica Fluorescencia de Rayos X ha sido una herramienta valiosa para estudiar la bioacumulación y remediación de As y metales pesados, por lo que se utilizará durante la producción de biomasa bacteriana y la subsiguiente purificación de los biopolímeros de su cubierta, para el desarrollo de resinas naturales de purificación de agua. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Reunión Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/204172 Aportes de la física en el desarrollo de bioadsorbentes para descontaminar agua; 106º Reunión Anual de la Asociación Física Argentina; Córdoba; Argentina; 2021; 3-4 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/204172 |
identifier_str_mv |
Aportes de la física en el desarrollo de bioadsorbentes para descontaminar agua; 106º Reunión Anual de la Asociación Física Argentina; Córdoba; Argentina; 2021; 3-4 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://rafa.fisica.org.ar/links-importantes/libro-de-resumenes/ |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Nacional |
dc.publisher.none.fl_str_mv |
Asociación Física Argentina |
publisher.none.fl_str_mv |
Asociación Física Argentina |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846781544423751680 |
score |
12.982451 |