Aportes de la física en el desarrollo de bioadsorbentes para descontaminar agua

Autores
Padilla, Eduardo Rubén; Perez, Roberto Daniel; Maturano, Carmen; Delfino, Ana Victoria; Ferrari, Ana; Bongiovanni, Guillermina Azucena
Año de publicación
2021
Idioma
español castellano
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
La contaminación del agua con metales pesados representa un riesgo serio para la salud porque son elementos tóxicos, generalmente cancerígenos cuando son consumidos en dosis bajas, pero en forma crónica. Uno de los más relevantes es el arsénico (As) porque alrededor de 4 millones de argentinos (más de 200 millones en el mundo, en más de 100 países 1) consumen agua contaminada con este tóxico. Existen varios métodos de remediación, pero son costosos, requieren personal entrenado o utilizan polímeros sintéticos que resultan también tóxicos. Además, suelen generar grandes volúmenes de desechos químicos de difícil disposición final. En los últimos años hemos estudiado la bioacumulación de As en microorganismos extremófilos autóctonos utilizando diversas técnicas que permiten identificar y cuantificar simultáneamente, numerosos elementos en las muestras. Mediante medidas de la Emisión de Fluorescencia en muestras irradiadas con Rayos X (micro-SRXRF, STXRF-XANES, TXRF, micro-XRF) encontramos que los microorganismos colectados en su hábitat contienen 31 µg de As por g de peso seco en promedio, con una alta capacidad de retener también Cr, Mn, Fe y Sr 2,3. Los análisis por SRXRF-XANES realizados en el Laboratorio Nacional de Luz Sincrotrón, Campinas, Brasil sugirieron que gran parte del As ambiental (en agua) es retenido en la cubierta externa 3. ObjetivosOptimizar la proliferación in vitro de microrganismos extremófilos de Neuquén para la obtención de biopolímeros con capacidad de adsorber contaminantes acuososMateriales y métodosCultivo in vitro de microorganismos en diferentes condiciones; análisis morfológicos y por coloración usando microscopio óptico y de fluorescencia; Fluorescencia de Rayos X (XRF y TXRF) realizados en el IFEG para estudiar bioacumulación de As y metales pesados, así como cuantificación de estos elementos en aguaResultadosObservamos, que en su hábitat, estos microorganismos presentan diferente coloración, desde blancas a verde oscuro (Figura 1, a). Los estudios realizados por microscopía indicaron que se trata principalmente de cianobacterias, las cuales presentan una pared celular que sería la responsable de retener los contaminantes ambientales. Gracias a los estudios por Fluorescencia de Rayos X realizados en el IFEG (MDL 0.25 µg/g de As) se encontró que las colonias más oscuras poseen mayor capacidad de acumulación de As (hasta 50 µg de As por g de peso seco). Observamos que el pH, temperatura e iluminación afectan el crecimiento in vitro de estos microorganismos. Cuando fueron incubados en condiciones óptimas y en medios de cultivo con 0.25 µg/mL de As (concentración promedio de aguas naturalmente contaminadas), encontramos que la concentración de este metaloide en el medio de cultivo disminuyó por debajo del límite de detección de la técnica TXRF (MDL 0.1 µg/mL de As), sugiriendo capacidad remediadora. ConclusiónConcluimos que la técnica Fluorescencia de Rayos X ha sido una herramienta valiosa para estudiar la bioacumulación y remediación de As y metales pesados, por lo que se utilizará durante la producción de biomasa bacteriana y la subsiguiente purificación de los biopolímeros de su cubierta, para el desarrollo de resinas naturales de purificación de agua.
Fil: Padilla, Eduardo Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Perez, Roberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Maturano, Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Delfino, Ana Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Ferrari, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Bongiovanni, Guillermina Azucena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
106º Reunión Anual de la Asociación Física Argentina
Córdoba
Argentina
Asociación Física Argentina
Materia
Descontaminación
Arsénico
Cianobacterias
Fluorescencia de rayos x
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/204172

id CONICETDig_4a71c34f8db85f4a21c5a65c323d7221
oai_identifier_str oai:ri.conicet.gov.ar:11336/204172
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Aportes de la física en el desarrollo de bioadsorbentes para descontaminar aguaPadilla, Eduardo RubénPerez, Roberto DanielMaturano, CarmenDelfino, Ana VictoriaFerrari, AnaBongiovanni, Guillermina AzucenaDescontaminaciónArsénicoCianobacteriasFluorescencia de rayos xhttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1La contaminación del agua con metales pesados representa un riesgo serio para la salud porque son elementos tóxicos, generalmente cancerígenos cuando son consumidos en dosis bajas, pero en forma crónica. Uno de los más relevantes es el arsénico (As) porque alrededor de 4 millones de argentinos (más de 200 millones en el mundo, en más de 100 países 1) consumen agua contaminada con este tóxico. Existen varios métodos de remediación, pero son costosos, requieren personal entrenado o utilizan polímeros sintéticos que resultan también tóxicos. Además, suelen generar grandes volúmenes de desechos químicos de difícil disposición final. En los últimos años hemos estudiado la bioacumulación de As en microorganismos extremófilos autóctonos utilizando diversas técnicas que permiten identificar y cuantificar simultáneamente, numerosos elementos en las muestras. Mediante medidas de la Emisión de Fluorescencia en muestras irradiadas con Rayos X (micro-SRXRF, STXRF-XANES, TXRF, micro-XRF) encontramos que los microorganismos colectados en su hábitat contienen 31 µg de As por g de peso seco en promedio, con una alta capacidad de retener también Cr, Mn, Fe y Sr 2,3. Los análisis por SRXRF-XANES realizados en el Laboratorio Nacional de Luz Sincrotrón, Campinas, Brasil sugirieron que gran parte del As ambiental (en agua) es retenido en la cubierta externa 3. ObjetivosOptimizar la proliferación in vitro de microrganismos extremófilos de Neuquén para la obtención de biopolímeros con capacidad de adsorber contaminantes acuososMateriales y métodosCultivo in vitro de microorganismos en diferentes condiciones; análisis morfológicos y por coloración usando microscopio óptico y de fluorescencia; Fluorescencia de Rayos X (XRF y TXRF) realizados en el IFEG para estudiar bioacumulación de As y metales pesados, así como cuantificación de estos elementos en aguaResultadosObservamos, que en su hábitat, estos microorganismos presentan diferente coloración, desde blancas a verde oscuro (Figura 1, a). Los estudios realizados por microscopía indicaron que se trata principalmente de cianobacterias, las cuales presentan una pared celular que sería la responsable de retener los contaminantes ambientales. Gracias a los estudios por Fluorescencia de Rayos X realizados en el IFEG (MDL 0.25 µg/g de As) se encontró que las colonias más oscuras poseen mayor capacidad de acumulación de As (hasta 50 µg de As por g de peso seco). Observamos que el pH, temperatura e iluminación afectan el crecimiento in vitro de estos microorganismos. Cuando fueron incubados en condiciones óptimas y en medios de cultivo con 0.25 µg/mL de As (concentración promedio de aguas naturalmente contaminadas), encontramos que la concentración de este metaloide en el medio de cultivo disminuyó por debajo del límite de detección de la técnica TXRF (MDL 0.1 µg/mL de As), sugiriendo capacidad remediadora. ConclusiónConcluimos que la técnica Fluorescencia de Rayos X ha sido una herramienta valiosa para estudiar la bioacumulación y remediación de As y metales pesados, por lo que se utilizará durante la producción de biomasa bacteriana y la subsiguiente purificación de los biopolímeros de su cubierta, para el desarrollo de resinas naturales de purificación de agua.Fil: Padilla, Eduardo Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Perez, Roberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Maturano, Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Delfino, Ana Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Ferrari, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; ArgentinaFil: Bongiovanni, Guillermina Azucena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina106º Reunión Anual de la Asociación Física ArgentinaCórdobaArgentinaAsociación Física ArgentinaAsociación Física Argentina2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectReuniónBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/204172Aportes de la física en el desarrollo de bioadsorbentes para descontaminar agua; 106º Reunión Anual de la Asociación Física Argentina; Córdoba; Argentina; 2021; 3-4CONICET DigitalCONICETspainfo:eu-repo/semantics/altIdentifier/url/http://rafa.fisica.org.ar/links-importantes/libro-de-resumenes/Nacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:13:31Zoai:ri.conicet.gov.ar:11336/204172instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:13:31.51CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Aportes de la física en el desarrollo de bioadsorbentes para descontaminar agua
title Aportes de la física en el desarrollo de bioadsorbentes para descontaminar agua
spellingShingle Aportes de la física en el desarrollo de bioadsorbentes para descontaminar agua
Padilla, Eduardo Rubén
Descontaminación
Arsénico
Cianobacterias
Fluorescencia de rayos x
title_short Aportes de la física en el desarrollo de bioadsorbentes para descontaminar agua
title_full Aportes de la física en el desarrollo de bioadsorbentes para descontaminar agua
title_fullStr Aportes de la física en el desarrollo de bioadsorbentes para descontaminar agua
title_full_unstemmed Aportes de la física en el desarrollo de bioadsorbentes para descontaminar agua
title_sort Aportes de la física en el desarrollo de bioadsorbentes para descontaminar agua
dc.creator.none.fl_str_mv Padilla, Eduardo Rubén
Perez, Roberto Daniel
Maturano, Carmen
Delfino, Ana Victoria
Ferrari, Ana
Bongiovanni, Guillermina Azucena
author Padilla, Eduardo Rubén
author_facet Padilla, Eduardo Rubén
Perez, Roberto Daniel
Maturano, Carmen
Delfino, Ana Victoria
Ferrari, Ana
Bongiovanni, Guillermina Azucena
author_role author
author2 Perez, Roberto Daniel
Maturano, Carmen
Delfino, Ana Victoria
Ferrari, Ana
Bongiovanni, Guillermina Azucena
author2_role author
author
author
author
author
dc.subject.none.fl_str_mv Descontaminación
Arsénico
Cianobacterias
Fluorescencia de rayos x
topic Descontaminación
Arsénico
Cianobacterias
Fluorescencia de rayos x
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.7
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv La contaminación del agua con metales pesados representa un riesgo serio para la salud porque son elementos tóxicos, generalmente cancerígenos cuando son consumidos en dosis bajas, pero en forma crónica. Uno de los más relevantes es el arsénico (As) porque alrededor de 4 millones de argentinos (más de 200 millones en el mundo, en más de 100 países 1) consumen agua contaminada con este tóxico. Existen varios métodos de remediación, pero son costosos, requieren personal entrenado o utilizan polímeros sintéticos que resultan también tóxicos. Además, suelen generar grandes volúmenes de desechos químicos de difícil disposición final. En los últimos años hemos estudiado la bioacumulación de As en microorganismos extremófilos autóctonos utilizando diversas técnicas que permiten identificar y cuantificar simultáneamente, numerosos elementos en las muestras. Mediante medidas de la Emisión de Fluorescencia en muestras irradiadas con Rayos X (micro-SRXRF, STXRF-XANES, TXRF, micro-XRF) encontramos que los microorganismos colectados en su hábitat contienen 31 µg de As por g de peso seco en promedio, con una alta capacidad de retener también Cr, Mn, Fe y Sr 2,3. Los análisis por SRXRF-XANES realizados en el Laboratorio Nacional de Luz Sincrotrón, Campinas, Brasil sugirieron que gran parte del As ambiental (en agua) es retenido en la cubierta externa 3. ObjetivosOptimizar la proliferación in vitro de microrganismos extremófilos de Neuquén para la obtención de biopolímeros con capacidad de adsorber contaminantes acuososMateriales y métodosCultivo in vitro de microorganismos en diferentes condiciones; análisis morfológicos y por coloración usando microscopio óptico y de fluorescencia; Fluorescencia de Rayos X (XRF y TXRF) realizados en el IFEG para estudiar bioacumulación de As y metales pesados, así como cuantificación de estos elementos en aguaResultadosObservamos, que en su hábitat, estos microorganismos presentan diferente coloración, desde blancas a verde oscuro (Figura 1, a). Los estudios realizados por microscopía indicaron que se trata principalmente de cianobacterias, las cuales presentan una pared celular que sería la responsable de retener los contaminantes ambientales. Gracias a los estudios por Fluorescencia de Rayos X realizados en el IFEG (MDL 0.25 µg/g de As) se encontró que las colonias más oscuras poseen mayor capacidad de acumulación de As (hasta 50 µg de As por g de peso seco). Observamos que el pH, temperatura e iluminación afectan el crecimiento in vitro de estos microorganismos. Cuando fueron incubados en condiciones óptimas y en medios de cultivo con 0.25 µg/mL de As (concentración promedio de aguas naturalmente contaminadas), encontramos que la concentración de este metaloide en el medio de cultivo disminuyó por debajo del límite de detección de la técnica TXRF (MDL 0.1 µg/mL de As), sugiriendo capacidad remediadora. ConclusiónConcluimos que la técnica Fluorescencia de Rayos X ha sido una herramienta valiosa para estudiar la bioacumulación y remediación de As y metales pesados, por lo que se utilizará durante la producción de biomasa bacteriana y la subsiguiente purificación de los biopolímeros de su cubierta, para el desarrollo de resinas naturales de purificación de agua.
Fil: Padilla, Eduardo Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Perez, Roberto Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
Fil: Maturano, Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Delfino, Ana Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Ferrari, Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
Fil: Bongiovanni, Guillermina Azucena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas. Universidad Nacional del Comahue. Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas; Argentina
106º Reunión Anual de la Asociación Física Argentina
Córdoba
Argentina
Asociación Física Argentina
description La contaminación del agua con metales pesados representa un riesgo serio para la salud porque son elementos tóxicos, generalmente cancerígenos cuando son consumidos en dosis bajas, pero en forma crónica. Uno de los más relevantes es el arsénico (As) porque alrededor de 4 millones de argentinos (más de 200 millones en el mundo, en más de 100 países 1) consumen agua contaminada con este tóxico. Existen varios métodos de remediación, pero son costosos, requieren personal entrenado o utilizan polímeros sintéticos que resultan también tóxicos. Además, suelen generar grandes volúmenes de desechos químicos de difícil disposición final. En los últimos años hemos estudiado la bioacumulación de As en microorganismos extremófilos autóctonos utilizando diversas técnicas que permiten identificar y cuantificar simultáneamente, numerosos elementos en las muestras. Mediante medidas de la Emisión de Fluorescencia en muestras irradiadas con Rayos X (micro-SRXRF, STXRF-XANES, TXRF, micro-XRF) encontramos que los microorganismos colectados en su hábitat contienen 31 µg de As por g de peso seco en promedio, con una alta capacidad de retener también Cr, Mn, Fe y Sr 2,3. Los análisis por SRXRF-XANES realizados en el Laboratorio Nacional de Luz Sincrotrón, Campinas, Brasil sugirieron que gran parte del As ambiental (en agua) es retenido en la cubierta externa 3. ObjetivosOptimizar la proliferación in vitro de microrganismos extremófilos de Neuquén para la obtención de biopolímeros con capacidad de adsorber contaminantes acuososMateriales y métodosCultivo in vitro de microorganismos en diferentes condiciones; análisis morfológicos y por coloración usando microscopio óptico y de fluorescencia; Fluorescencia de Rayos X (XRF y TXRF) realizados en el IFEG para estudiar bioacumulación de As y metales pesados, así como cuantificación de estos elementos en aguaResultadosObservamos, que en su hábitat, estos microorganismos presentan diferente coloración, desde blancas a verde oscuro (Figura 1, a). Los estudios realizados por microscopía indicaron que se trata principalmente de cianobacterias, las cuales presentan una pared celular que sería la responsable de retener los contaminantes ambientales. Gracias a los estudios por Fluorescencia de Rayos X realizados en el IFEG (MDL 0.25 µg/g de As) se encontró que las colonias más oscuras poseen mayor capacidad de acumulación de As (hasta 50 µg de As por g de peso seco). Observamos que el pH, temperatura e iluminación afectan el crecimiento in vitro de estos microorganismos. Cuando fueron incubados en condiciones óptimas y en medios de cultivo con 0.25 µg/mL de As (concentración promedio de aguas naturalmente contaminadas), encontramos que la concentración de este metaloide en el medio de cultivo disminuyó por debajo del límite de detección de la técnica TXRF (MDL 0.1 µg/mL de As), sugiriendo capacidad remediadora. ConclusiónConcluimos que la técnica Fluorescencia de Rayos X ha sido una herramienta valiosa para estudiar la bioacumulación y remediación de As y metales pesados, por lo que se utilizará durante la producción de biomasa bacteriana y la subsiguiente purificación de los biopolímeros de su cubierta, para el desarrollo de resinas naturales de purificación de agua.
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/publishedVersion
info:eu-repo/semantics/conferenceObject
Reunión
Book
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
status_str publishedVersion
format conferenceObject
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/204172
Aportes de la física en el desarrollo de bioadsorbentes para descontaminar agua; 106º Reunión Anual de la Asociación Física Argentina; Córdoba; Argentina; 2021; 3-4
CONICET Digital
CONICET
url http://hdl.handle.net/11336/204172
identifier_str_mv Aportes de la física en el desarrollo de bioadsorbentes para descontaminar agua; 106º Reunión Anual de la Asociación Física Argentina; Córdoba; Argentina; 2021; 3-4
CONICET Digital
CONICET
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://rafa.fisica.org.ar/links-importantes/libro-de-resumenes/
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.coverage.none.fl_str_mv Nacional
dc.publisher.none.fl_str_mv Asociación Física Argentina
publisher.none.fl_str_mv Asociación Física Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781544423751680
score 12.982451