Anisotropic mesh refinement in polyhedral domains: error estimates with data in L 2 (Ω)
- Autores
- Apel, Thomas; Lombardi, Ariel Luis; Winkler, Max
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The paper is concerned with the finite element solution of the Poisson equation with homogeneous Dirichlet boundary condition in a three-dimensional domain. Anisotropic, graded meshes from a former paper are reused for dealing with the singular behaviour of the solution in the vicinity of the non-smooth parts of the boundary. The discretization error is analyzed for the piecewise linear approximation in the H1(Ω)- and L2(Ω)-norms by using a new quasi-interpolation operator. This new interpolant is introduced in order to prove the estimates for L2(Ω)-data in the differential equation which is not possible for the standard nodal interpolant. These new estimates allow for the extension of certain error estimates for optimal control problems with elliptic partial differential equations and for a simpler proof of the discrete compactness property for edge elements of any order on this kind of finite element meshes.
Fil: Apel, Thomas. Universität der Bundeswehr München; Alemania
Fil: Lombardi, Ariel Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Universidad de Buenos Aires; Argentina
Fil: Winkler, Max. Universität der Bundeswehr München; Alemania - Materia
-
Finite Element Method
Edfe And Corner Singularities
Anisotropic Mesh Grading
Elliptic Boundary Value Problem - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/35857
Ver los metadatos del registro completo
id |
CONICETDig_4a241b90d731e9cad6e50e1613de0e2b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/35857 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Anisotropic mesh refinement in polyhedral domains: error estimates with data in L 2 (Ω)Apel, ThomasLombardi, Ariel LuisWinkler, MaxFinite Element MethodEdfe And Corner SingularitiesAnisotropic Mesh GradingElliptic Boundary Value Problemhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The paper is concerned with the finite element solution of the Poisson equation with homogeneous Dirichlet boundary condition in a three-dimensional domain. Anisotropic, graded meshes from a former paper are reused for dealing with the singular behaviour of the solution in the vicinity of the non-smooth parts of the boundary. The discretization error is analyzed for the piecewise linear approximation in the H1(Ω)- and L2(Ω)-norms by using a new quasi-interpolation operator. This new interpolant is introduced in order to prove the estimates for L2(Ω)-data in the differential equation which is not possible for the standard nodal interpolant. These new estimates allow for the extension of certain error estimates for optimal control problems with elliptic partial differential equations and for a simpler proof of the discrete compactness property for edge elements of any order on this kind of finite element meshes.Fil: Apel, Thomas. Universität der Bundeswehr München; AlemaniaFil: Lombardi, Ariel Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Universidad de Buenos Aires; ArgentinaFil: Winkler, Max. Universität der Bundeswehr München; AlemaniaEDP Sciences2014-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/35857Apel, Thomas; Lombardi, Ariel Luis; Winkler, Max; Anisotropic mesh refinement in polyhedral domains: error estimates with data in L 2 (Ω); EDP Sciences; Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique; 48; 4; 8-2014; 1117-11450764-583XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/1303.2960.pdfinfo:eu-repo/semantics/altIdentifier/doi/10.1051/m2an/2013134info:eu-repo/semantics/altIdentifier/url/https://www.esaim-m2an.org/articles/m2an/abs/2014/04/m2an130134/m2an130134.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:53:25Zoai:ri.conicet.gov.ar:11336/35857instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:53:25.905CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Anisotropic mesh refinement in polyhedral domains: error estimates with data in L 2 (Ω) |
title |
Anisotropic mesh refinement in polyhedral domains: error estimates with data in L 2 (Ω) |
spellingShingle |
Anisotropic mesh refinement in polyhedral domains: error estimates with data in L 2 (Ω) Apel, Thomas Finite Element Method Edfe And Corner Singularities Anisotropic Mesh Grading Elliptic Boundary Value Problem |
title_short |
Anisotropic mesh refinement in polyhedral domains: error estimates with data in L 2 (Ω) |
title_full |
Anisotropic mesh refinement in polyhedral domains: error estimates with data in L 2 (Ω) |
title_fullStr |
Anisotropic mesh refinement in polyhedral domains: error estimates with data in L 2 (Ω) |
title_full_unstemmed |
Anisotropic mesh refinement in polyhedral domains: error estimates with data in L 2 (Ω) |
title_sort |
Anisotropic mesh refinement in polyhedral domains: error estimates with data in L 2 (Ω) |
dc.creator.none.fl_str_mv |
Apel, Thomas Lombardi, Ariel Luis Winkler, Max |
author |
Apel, Thomas |
author_facet |
Apel, Thomas Lombardi, Ariel Luis Winkler, Max |
author_role |
author |
author2 |
Lombardi, Ariel Luis Winkler, Max |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Finite Element Method Edfe And Corner Singularities Anisotropic Mesh Grading Elliptic Boundary Value Problem |
topic |
Finite Element Method Edfe And Corner Singularities Anisotropic Mesh Grading Elliptic Boundary Value Problem |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The paper is concerned with the finite element solution of the Poisson equation with homogeneous Dirichlet boundary condition in a three-dimensional domain. Anisotropic, graded meshes from a former paper are reused for dealing with the singular behaviour of the solution in the vicinity of the non-smooth parts of the boundary. The discretization error is analyzed for the piecewise linear approximation in the H1(Ω)- and L2(Ω)-norms by using a new quasi-interpolation operator. This new interpolant is introduced in order to prove the estimates for L2(Ω)-data in the differential equation which is not possible for the standard nodal interpolant. These new estimates allow for the extension of certain error estimates for optimal control problems with elliptic partial differential equations and for a simpler proof of the discrete compactness property for edge elements of any order on this kind of finite element meshes. Fil: Apel, Thomas. Universität der Bundeswehr München; Alemania Fil: Lombardi, Ariel Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Universidad de Buenos Aires; Argentina Fil: Winkler, Max. Universität der Bundeswehr München; Alemania |
description |
The paper is concerned with the finite element solution of the Poisson equation with homogeneous Dirichlet boundary condition in a three-dimensional domain. Anisotropic, graded meshes from a former paper are reused for dealing with the singular behaviour of the solution in the vicinity of the non-smooth parts of the boundary. The discretization error is analyzed for the piecewise linear approximation in the H1(Ω)- and L2(Ω)-norms by using a new quasi-interpolation operator. This new interpolant is introduced in order to prove the estimates for L2(Ω)-data in the differential equation which is not possible for the standard nodal interpolant. These new estimates allow for the extension of certain error estimates for optimal control problems with elliptic partial differential equations and for a simpler proof of the discrete compactness property for edge elements of any order on this kind of finite element meshes. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-08 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/35857 Apel, Thomas; Lombardi, Ariel Luis; Winkler, Max; Anisotropic mesh refinement in polyhedral domains: error estimates with data in L 2 (Ω); EDP Sciences; Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique; 48; 4; 8-2014; 1117-1145 0764-583X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/35857 |
identifier_str_mv |
Apel, Thomas; Lombardi, Ariel Luis; Winkler, Max; Anisotropic mesh refinement in polyhedral domains: error estimates with data in L 2 (Ω); EDP Sciences; Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique; 48; 4; 8-2014; 1117-1145 0764-583X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/1303.2960.pdf info:eu-repo/semantics/altIdentifier/doi/10.1051/m2an/2013134 info:eu-repo/semantics/altIdentifier/url/https://www.esaim-m2an.org/articles/m2an/abs/2014/04/m2an130134/m2an130134.html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
EDP Sciences |
publisher.none.fl_str_mv |
EDP Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269224900231168 |
score |
13.13397 |