An elliptic singular system with nonlocal boundary conditions

Autores
Amster, Pablo Gustavo; Maurette, Manuel
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the existence of solutions for the nonlinear second order elliptic system ∆u + g(u) = f(x), where g ∈ C(R N \ S, R N ) with S ⊂ R N bounded. Using topological degree methods, we prove an existence result under a geometric condition on g. Moreover, we analyze the particular case of an isolated repulsive singularity: under a Nirenberg type condition, we prove the existence of a sequence of solutions of appropriate approximated problems that converges to a generalized solution.
Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Maurette, Manuel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Singularities
Elliptic System
Nonlocal Conditions
Topological Degree
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19932

id CONICETDig_e6bde1b4d71093ea3fa1056b48dd9510
oai_identifier_str oai:ri.conicet.gov.ar:11336/19932
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling An elliptic singular system with nonlocal boundary conditionsAmster, Pablo GustavoMaurette, ManuelSingularitiesElliptic SystemNonlocal ConditionsTopological Degreehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the existence of solutions for the nonlinear second order elliptic system ∆u + g(u) = f(x), where g ∈ C(R N \ S, R N ) with S ⊂ R N bounded. Using topological degree methods, we prove an existence result under a geometric condition on g. Moreover, we analyze the particular case of an isolated repulsive singularity: under a Nirenberg type condition, we prove the existence of a sequence of solutions of appropriate approximated problems that converges to a generalized solution.Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Maurette, Manuel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier2012-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19932Amster, Pablo Gustavo; Maurette, Manuel; An elliptic singular system with nonlocal boundary conditions; Elsevier; Journal Of Nonlinear Analysis; 75; 15; 10-2012; 5815-58230362-546XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.na.2012.05.024info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0362546X12002301info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:02Zoai:ri.conicet.gov.ar:11336/19932instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:02.416CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv An elliptic singular system with nonlocal boundary conditions
title An elliptic singular system with nonlocal boundary conditions
spellingShingle An elliptic singular system with nonlocal boundary conditions
Amster, Pablo Gustavo
Singularities
Elliptic System
Nonlocal Conditions
Topological Degree
title_short An elliptic singular system with nonlocal boundary conditions
title_full An elliptic singular system with nonlocal boundary conditions
title_fullStr An elliptic singular system with nonlocal boundary conditions
title_full_unstemmed An elliptic singular system with nonlocal boundary conditions
title_sort An elliptic singular system with nonlocal boundary conditions
dc.creator.none.fl_str_mv Amster, Pablo Gustavo
Maurette, Manuel
author Amster, Pablo Gustavo
author_facet Amster, Pablo Gustavo
Maurette, Manuel
author_role author
author2 Maurette, Manuel
author2_role author
dc.subject.none.fl_str_mv Singularities
Elliptic System
Nonlocal Conditions
Topological Degree
topic Singularities
Elliptic System
Nonlocal Conditions
Topological Degree
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the existence of solutions for the nonlinear second order elliptic system ∆u + g(u) = f(x), where g ∈ C(R N \ S, R N ) with S ⊂ R N bounded. Using topological degree methods, we prove an existence result under a geometric condition on g. Moreover, we analyze the particular case of an isolated repulsive singularity: under a Nirenberg type condition, we prove the existence of a sequence of solutions of appropriate approximated problems that converges to a generalized solution.
Fil: Amster, Pablo Gustavo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Maurette, Manuel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We study the existence of solutions for the nonlinear second order elliptic system ∆u + g(u) = f(x), where g ∈ C(R N \ S, R N ) with S ⊂ R N bounded. Using topological degree methods, we prove an existence result under a geometric condition on g. Moreover, we analyze the particular case of an isolated repulsive singularity: under a Nirenberg type condition, we prove the existence of a sequence of solutions of appropriate approximated problems that converges to a generalized solution.
publishDate 2012
dc.date.none.fl_str_mv 2012-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19932
Amster, Pablo Gustavo; Maurette, Manuel; An elliptic singular system with nonlocal boundary conditions; Elsevier; Journal Of Nonlinear Analysis; 75; 15; 10-2012; 5815-5823
0362-546X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19932
identifier_str_mv Amster, Pablo Gustavo; Maurette, Manuel; An elliptic singular system with nonlocal boundary conditions; Elsevier; Journal Of Nonlinear Analysis; 75; 15; 10-2012; 5815-5823
0362-546X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.na.2012.05.024
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0362546X12002301
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269732854562816
score 13.13397