The discrete compactness property for anisotropic edge elements on polyhedral domains

Autores
Lombardi, Ariel Luis
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We prove the discrete compactness property of the edge elements of any order on a class of anisotropically refined meshes on polyhedral domains. The meshes, made up of tetrahedra, have been introduced in [Th. Apel and S. Nicaise, Math. Meth. Appl. Sci. 21 (1998) 519?549]. They are appropriately graded near singular corners and edges of the polyhedron.
Fil: Lombardi, Ariel Luis. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
DISCRETE COMPACTNESS PROPERTY
EDGE ELEMENTS
ANISOTROPIC FINITE ELEMENTS
MAXWELL EQUATIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/246992

id CONICETDig_03f0b9c4f82f3b4ae140ecfc74ea6364
oai_identifier_str oai:ri.conicet.gov.ar:11336/246992
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The discrete compactness property for anisotropic edge elements on polyhedral domainsLombardi, Ariel LuisDISCRETE COMPACTNESS PROPERTYEDGE ELEMENTSANISOTROPIC FINITE ELEMENTSMAXWELL EQUATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove the discrete compactness property of the edge elements of any order on a class of anisotropically refined meshes on polyhedral domains. The meshes, made up of tetrahedra, have been introduced in [Th. Apel and S. Nicaise, Math. Meth. Appl. Sci. 21 (1998) 519?549]. They are appropriately graded near singular corners and edges of the polyhedron.Fil: Lombardi, Ariel Luis. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaEDP Sciences2012-08info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/246992Lombardi, Ariel Luis; The discrete compactness property for anisotropic edge elements on polyhedral domains; EDP Sciences; Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique; 47; 1; 8-2012; 169-1810764-583XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.esaim-m2an.org/10.1051/m2an/2012024info:eu-repo/semantics/altIdentifier/doi/10.1051/m2an/2012024info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:25:54Zoai:ri.conicet.gov.ar:11336/246992instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:25:55.136CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The discrete compactness property for anisotropic edge elements on polyhedral domains
title The discrete compactness property for anisotropic edge elements on polyhedral domains
spellingShingle The discrete compactness property for anisotropic edge elements on polyhedral domains
Lombardi, Ariel Luis
DISCRETE COMPACTNESS PROPERTY
EDGE ELEMENTS
ANISOTROPIC FINITE ELEMENTS
MAXWELL EQUATIONS
title_short The discrete compactness property for anisotropic edge elements on polyhedral domains
title_full The discrete compactness property for anisotropic edge elements on polyhedral domains
title_fullStr The discrete compactness property for anisotropic edge elements on polyhedral domains
title_full_unstemmed The discrete compactness property for anisotropic edge elements on polyhedral domains
title_sort The discrete compactness property for anisotropic edge elements on polyhedral domains
dc.creator.none.fl_str_mv Lombardi, Ariel Luis
author Lombardi, Ariel Luis
author_facet Lombardi, Ariel Luis
author_role author
dc.subject.none.fl_str_mv DISCRETE COMPACTNESS PROPERTY
EDGE ELEMENTS
ANISOTROPIC FINITE ELEMENTS
MAXWELL EQUATIONS
topic DISCRETE COMPACTNESS PROPERTY
EDGE ELEMENTS
ANISOTROPIC FINITE ELEMENTS
MAXWELL EQUATIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We prove the discrete compactness property of the edge elements of any order on a class of anisotropically refined meshes on polyhedral domains. The meshes, made up of tetrahedra, have been introduced in [Th. Apel and S. Nicaise, Math. Meth. Appl. Sci. 21 (1998) 519?549]. They are appropriately graded near singular corners and edges of the polyhedron.
Fil: Lombardi, Ariel Luis. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description We prove the discrete compactness property of the edge elements of any order on a class of anisotropically refined meshes on polyhedral domains. The meshes, made up of tetrahedra, have been introduced in [Th. Apel and S. Nicaise, Math. Meth. Appl. Sci. 21 (1998) 519?549]. They are appropriately graded near singular corners and edges of the polyhedron.
publishDate 2012
dc.date.none.fl_str_mv 2012-08
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/246992
Lombardi, Ariel Luis; The discrete compactness property for anisotropic edge elements on polyhedral domains; EDP Sciences; Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique; 47; 1; 8-2012; 169-181
0764-583X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/246992
identifier_str_mv Lombardi, Ariel Luis; The discrete compactness property for anisotropic edge elements on polyhedral domains; EDP Sciences; Esaim-mathematical Modelling And Numerical Analysis-modelisation Matheematique Et Analyse Numerique; 47; 1; 8-2012; 169-181
0764-583X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.esaim-m2an.org/10.1051/m2an/2012024
info:eu-repo/semantics/altIdentifier/doi/10.1051/m2an/2012024
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv EDP Sciences
publisher.none.fl_str_mv EDP Sciences
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083402995859456
score 13.22299