Reactor designs for ethylene production via ethane oxidative dehydrogenation: Comparison of performance
- Autores
- Rodriguez, Maria L.; Ardissone, Daniel Enrique; Lopez, Eduardo; Pedernera, Marisa Noemi; Borio, Daniel Oscar
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The implementation of ethane oxidative dehydrogenation (ODH) toward ethylene production in two different reactor configurations is studied here by means of a mathematical model of the reactors. A conventional liquid-cooled multitubular reactor and a multitubular membrane reactor are considered for comparison. Both reactor designs use a Ni-Nb-O catalyst washcoated over raschig-rings inside the tubes; molten salts flow in the shell side of the conventional reactor whereas pure oxygen is assumed for the shell of the membrane reactor. Industrial-scale ethylene production is the aim. Results show that the variation of the bed density (different thickness of the catalytic washcoat over the pellets) shows opposite effects on both reactor designs. For the conventional reactor, the increase in bed density leads to more pronounced hot spots as well as to an undesired oxygen depletion inside the tubes. Conversely, for the membrane reactor, higher bed densities prevent oxygen accumulation along the tube length leading to lower oxygen partial pressures and, consequently, higher selectivities. In this way, higher ethylene production rates are feasible. Although molten salts provides enhanced heat removal, the oxygen injection at only the tube mouth in the conventional reactor leads to lower global selectivities and higher heat generation rates. In the membrane reactor design, the heat generation rate proves to be efficiently controlled by the permeation flow of oxygen through the membrane.
Fil: Rodriguez, Maria L.. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Económico Sociales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Ardissone, Daniel Enrique. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Económico Sociales; Argentina
Fil: Lopez, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Pedernera, Marisa Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina
Fil: Borio, Daniel Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina - Materia
-
Ethylene
Membrane
Reactor - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/56152
Ver los metadatos del registro completo
| id |
CONICETDig_49aa4ce4d937cf62e6dddfe436a67a42 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/56152 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Reactor designs for ethylene production via ethane oxidative dehydrogenation: Comparison of performanceRodriguez, Maria L.Ardissone, Daniel EnriqueLopez, EduardoPedernera, Marisa NoemiBorio, Daniel OscarEthyleneMembraneReactorhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The implementation of ethane oxidative dehydrogenation (ODH) toward ethylene production in two different reactor configurations is studied here by means of a mathematical model of the reactors. A conventional liquid-cooled multitubular reactor and a multitubular membrane reactor are considered for comparison. Both reactor designs use a Ni-Nb-O catalyst washcoated over raschig-rings inside the tubes; molten salts flow in the shell side of the conventional reactor whereas pure oxygen is assumed for the shell of the membrane reactor. Industrial-scale ethylene production is the aim. Results show that the variation of the bed density (different thickness of the catalytic washcoat over the pellets) shows opposite effects on both reactor designs. For the conventional reactor, the increase in bed density leads to more pronounced hot spots as well as to an undesired oxygen depletion inside the tubes. Conversely, for the membrane reactor, higher bed densities prevent oxygen accumulation along the tube length leading to lower oxygen partial pressures and, consequently, higher selectivities. In this way, higher ethylene production rates are feasible. Although molten salts provides enhanced heat removal, the oxygen injection at only the tube mouth in the conventional reactor leads to lower global selectivities and higher heat generation rates. In the membrane reactor design, the heat generation rate proves to be efficiently controlled by the permeation flow of oxygen through the membrane.Fil: Rodriguez, Maria L.. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Económico Sociales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Ardissone, Daniel Enrique. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Económico Sociales; ArgentinaFil: Lopez, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Pedernera, Marisa Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Borio, Daniel Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaAmerican Chemical Society2011-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/56152Rodriguez, Maria L.; Ardissone, Daniel Enrique; Lopez, Eduardo; Pedernera, Marisa Noemi; Borio, Daniel Oscar; Reactor designs for ethylene production via ethane oxidative dehydrogenation: Comparison of performance; American Chemical Society; Industrial & Engineering Chemical Research; 50; 5; 3-2011; 2690-26970888-5885CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1021/ie100738qinfo:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/ie100738qinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:27:38Zoai:ri.conicet.gov.ar:11336/56152instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:27:39.025CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Reactor designs for ethylene production via ethane oxidative dehydrogenation: Comparison of performance |
| title |
Reactor designs for ethylene production via ethane oxidative dehydrogenation: Comparison of performance |
| spellingShingle |
Reactor designs for ethylene production via ethane oxidative dehydrogenation: Comparison of performance Rodriguez, Maria L. Ethylene Membrane Reactor |
| title_short |
Reactor designs for ethylene production via ethane oxidative dehydrogenation: Comparison of performance |
| title_full |
Reactor designs for ethylene production via ethane oxidative dehydrogenation: Comparison of performance |
| title_fullStr |
Reactor designs for ethylene production via ethane oxidative dehydrogenation: Comparison of performance |
| title_full_unstemmed |
Reactor designs for ethylene production via ethane oxidative dehydrogenation: Comparison of performance |
| title_sort |
Reactor designs for ethylene production via ethane oxidative dehydrogenation: Comparison of performance |
| dc.creator.none.fl_str_mv |
Rodriguez, Maria L. Ardissone, Daniel Enrique Lopez, Eduardo Pedernera, Marisa Noemi Borio, Daniel Oscar |
| author |
Rodriguez, Maria L. |
| author_facet |
Rodriguez, Maria L. Ardissone, Daniel Enrique Lopez, Eduardo Pedernera, Marisa Noemi Borio, Daniel Oscar |
| author_role |
author |
| author2 |
Ardissone, Daniel Enrique Lopez, Eduardo Pedernera, Marisa Noemi Borio, Daniel Oscar |
| author2_role |
author author author author |
| dc.subject.none.fl_str_mv |
Ethylene Membrane Reactor |
| topic |
Ethylene Membrane Reactor |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
The implementation of ethane oxidative dehydrogenation (ODH) toward ethylene production in two different reactor configurations is studied here by means of a mathematical model of the reactors. A conventional liquid-cooled multitubular reactor and a multitubular membrane reactor are considered for comparison. Both reactor designs use a Ni-Nb-O catalyst washcoated over raschig-rings inside the tubes; molten salts flow in the shell side of the conventional reactor whereas pure oxygen is assumed for the shell of the membrane reactor. Industrial-scale ethylene production is the aim. Results show that the variation of the bed density (different thickness of the catalytic washcoat over the pellets) shows opposite effects on both reactor designs. For the conventional reactor, the increase in bed density leads to more pronounced hot spots as well as to an undesired oxygen depletion inside the tubes. Conversely, for the membrane reactor, higher bed densities prevent oxygen accumulation along the tube length leading to lower oxygen partial pressures and, consequently, higher selectivities. In this way, higher ethylene production rates are feasible. Although molten salts provides enhanced heat removal, the oxygen injection at only the tube mouth in the conventional reactor leads to lower global selectivities and higher heat generation rates. In the membrane reactor design, the heat generation rate proves to be efficiently controlled by the permeation flow of oxygen through the membrane. Fil: Rodriguez, Maria L.. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Económico Sociales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Ardissone, Daniel Enrique. Universidad Nacional de San Luis. Facultad de Ingeniería y Ciencias Económico Sociales; Argentina Fil: Lopez, Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Pedernera, Marisa Noemi. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina Fil: Borio, Daniel Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; Argentina |
| description |
The implementation of ethane oxidative dehydrogenation (ODH) toward ethylene production in two different reactor configurations is studied here by means of a mathematical model of the reactors. A conventional liquid-cooled multitubular reactor and a multitubular membrane reactor are considered for comparison. Both reactor designs use a Ni-Nb-O catalyst washcoated over raschig-rings inside the tubes; molten salts flow in the shell side of the conventional reactor whereas pure oxygen is assumed for the shell of the membrane reactor. Industrial-scale ethylene production is the aim. Results show that the variation of the bed density (different thickness of the catalytic washcoat over the pellets) shows opposite effects on both reactor designs. For the conventional reactor, the increase in bed density leads to more pronounced hot spots as well as to an undesired oxygen depletion inside the tubes. Conversely, for the membrane reactor, higher bed densities prevent oxygen accumulation along the tube length leading to lower oxygen partial pressures and, consequently, higher selectivities. In this way, higher ethylene production rates are feasible. Although molten salts provides enhanced heat removal, the oxygen injection at only the tube mouth in the conventional reactor leads to lower global selectivities and higher heat generation rates. In the membrane reactor design, the heat generation rate proves to be efficiently controlled by the permeation flow of oxygen through the membrane. |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/56152 Rodriguez, Maria L.; Ardissone, Daniel Enrique; Lopez, Eduardo; Pedernera, Marisa Noemi; Borio, Daniel Oscar; Reactor designs for ethylene production via ethane oxidative dehydrogenation: Comparison of performance; American Chemical Society; Industrial & Engineering Chemical Research; 50; 5; 3-2011; 2690-2697 0888-5885 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/56152 |
| identifier_str_mv |
Rodriguez, Maria L.; Ardissone, Daniel Enrique; Lopez, Eduardo; Pedernera, Marisa Noemi; Borio, Daniel Oscar; Reactor designs for ethylene production via ethane oxidative dehydrogenation: Comparison of performance; American Chemical Society; Industrial & Engineering Chemical Research; 50; 5; 3-2011; 2690-2697 0888-5885 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1021/ie100738q info:eu-repo/semantics/altIdentifier/url/https://pubs.acs.org/doi/abs/10.1021/ie100738q |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Chemical Society |
| publisher.none.fl_str_mv |
American Chemical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781846617063424 |
| score |
12.982451 |