Local and nonlocal energy-based coupling models

Autores
Acosta, Gabriel; Bersetche, Francisco; Rossi, Julio Daniel
Año de publicación
2022
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we study two different ways of coupling a local operator with a nonlocal one so that the resulting equation is related to an energy functional. In the first strategy the coupling is given via source terms in the equation, and in the second one a flux condition in the local part appears. For both models we prove existence and uniqueness of a solution that is obtained via direct minimization of the related energy functional. In the second part of this paper we extend these ideas to local/nonlocal elasticity models in which we couple classical local elasticity with nonlocal peridynamics.
Fil: Acosta, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Bersetche, Francisco. Universidad Tecnica Federico Santa Maria.; Chile
Fil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
COUPLINGS
ELASTICITY
LOCAL EQUATIONS
NONLOCAL EQUATIONS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/219091

id CONICETDig_4917a20023eea6f414e38ce23dc5d74b
oai_identifier_str oai:ri.conicet.gov.ar:11336/219091
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Local and nonlocal energy-based coupling modelsAcosta, GabrielBersetche, FranciscoRossi, Julio DanielCOUPLINGSELASTICITYLOCAL EQUATIONSNONLOCAL EQUATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we study two different ways of coupling a local operator with a nonlocal one so that the resulting equation is related to an energy functional. In the first strategy the coupling is given via source terms in the equation, and in the second one a flux condition in the local part appears. For both models we prove existence and uniqueness of a solution that is obtained via direct minimization of the related energy functional. In the second part of this paper we extend these ideas to local/nonlocal elasticity models in which we couple classical local elasticity with nonlocal peridynamics.Fil: Acosta, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Bersetche, Francisco. Universidad Tecnica Federico Santa Maria.; ChileFil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSociety for Industrial and Applied Mathematics2022-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/219091Acosta, Gabriel; Bersetche, Francisco; Rossi, Julio Daniel; Local and nonlocal energy-based coupling models; Society for Industrial and Applied Mathematics; Siam Journal On Mathematical Analysis; 54; 6; 12-2022; 6288-63220036-1410CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1137/21M1431977info:eu-repo/semantics/altIdentifier/url/https://epubs.siam.org/doi/10.1137/21M1431977info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2107.05083info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:09:10Zoai:ri.conicet.gov.ar:11336/219091instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:09:10.666CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Local and nonlocal energy-based coupling models
title Local and nonlocal energy-based coupling models
spellingShingle Local and nonlocal energy-based coupling models
Acosta, Gabriel
COUPLINGS
ELASTICITY
LOCAL EQUATIONS
NONLOCAL EQUATIONS
title_short Local and nonlocal energy-based coupling models
title_full Local and nonlocal energy-based coupling models
title_fullStr Local and nonlocal energy-based coupling models
title_full_unstemmed Local and nonlocal energy-based coupling models
title_sort Local and nonlocal energy-based coupling models
dc.creator.none.fl_str_mv Acosta, Gabriel
Bersetche, Francisco
Rossi, Julio Daniel
author Acosta, Gabriel
author_facet Acosta, Gabriel
Bersetche, Francisco
Rossi, Julio Daniel
author_role author
author2 Bersetche, Francisco
Rossi, Julio Daniel
author2_role author
author
dc.subject.none.fl_str_mv COUPLINGS
ELASTICITY
LOCAL EQUATIONS
NONLOCAL EQUATIONS
topic COUPLINGS
ELASTICITY
LOCAL EQUATIONS
NONLOCAL EQUATIONS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we study two different ways of coupling a local operator with a nonlocal one so that the resulting equation is related to an energy functional. In the first strategy the coupling is given via source terms in the equation, and in the second one a flux condition in the local part appears. For both models we prove existence and uniqueness of a solution that is obtained via direct minimization of the related energy functional. In the second part of this paper we extend these ideas to local/nonlocal elasticity models in which we couple classical local elasticity with nonlocal peridynamics.
Fil: Acosta, Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Bersetche, Francisco. Universidad Tecnica Federico Santa Maria.; Chile
Fil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description In this paper we study two different ways of coupling a local operator with a nonlocal one so that the resulting equation is related to an energy functional. In the first strategy the coupling is given via source terms in the equation, and in the second one a flux condition in the local part appears. For both models we prove existence and uniqueness of a solution that is obtained via direct minimization of the related energy functional. In the second part of this paper we extend these ideas to local/nonlocal elasticity models in which we couple classical local elasticity with nonlocal peridynamics.
publishDate 2022
dc.date.none.fl_str_mv 2022-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/219091
Acosta, Gabriel; Bersetche, Francisco; Rossi, Julio Daniel; Local and nonlocal energy-based coupling models; Society for Industrial and Applied Mathematics; Siam Journal On Mathematical Analysis; 54; 6; 12-2022; 6288-6322
0036-1410
CONICET Digital
CONICET
url http://hdl.handle.net/11336/219091
identifier_str_mv Acosta, Gabriel; Bersetche, Francisco; Rossi, Julio Daniel; Local and nonlocal energy-based coupling models; Society for Industrial and Applied Mathematics; Siam Journal On Mathematical Analysis; 54; 6; 12-2022; 6288-6322
0036-1410
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1137/21M1431977
info:eu-repo/semantics/altIdentifier/url/https://epubs.siam.org/doi/10.1137/21M1431977
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2107.05083
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Society for Industrial and Applied Mathematics
publisher.none.fl_str_mv Society for Industrial and Applied Mathematics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781431950344192
score 12.982451