Optimal Operation of Discretely Controlled Continuous Systems under Uncertainty
- Autores
- de Paula, Mariano; Martinez, Ernesto Carlos
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Discretely controlled continuous systems constitute a special class of continuous-time hybrid dynamical systems where timely switching to alternative control modes is used for dynamic optimization in uncertain environments. Each mode implements a parametrized feedback control law until a stopping condition triggers due to the activation of a constraint related to states, controls, or disturbances. For optimal operation under uncertainty, a novel simulation-based algorithm that combinesdynamic programming with event-driven execution and Gaussian processes is proposed to learn a switching policy for mode selection. To deal with the size/dimension of the state space and a continuum of control mode parameters, Bayesian active learning is proposed using a utility function that trades off information content with policy improvement. Probabilistic models of the state transition dynamics following each mode execution are fitted upon data obtained by increasingly biasing operating conditions. Throughput maximization in a hybrid chemical plant is used as a representative case study.
Fil: de Paula, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina - Materia
-
Optimal Operation
Discretely Controlled Continuous Systems
Reinforcement Learning
Uncertainty - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/273867
Ver los metadatos del registro completo
| id |
CONICETDig_6676bf79c1bdb71186b25cd5c7399d3d |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/273867 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Optimal Operation of Discretely Controlled Continuous Systems under Uncertaintyde Paula, MarianoMartinez, Ernesto CarlosOptimal OperationDiscretely Controlled Continuous SystemsReinforcement LearningUncertaintyhttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Discretely controlled continuous systems constitute a special class of continuous-time hybrid dynamical systems where timely switching to alternative control modes is used for dynamic optimization in uncertain environments. Each mode implements a parametrized feedback control law until a stopping condition triggers due to the activation of a constraint related to states, controls, or disturbances. For optimal operation under uncertainty, a novel simulation-based algorithm that combinesdynamic programming with event-driven execution and Gaussian processes is proposed to learn a switching policy for mode selection. To deal with the size/dimension of the state space and a continuum of control mode parameters, Bayesian active learning is proposed using a utility function that trades off information content with policy improvement. Probabilistic models of the state transition dynamics following each mode execution are fitted upon data obtained by increasingly biasing operating conditions. Throughput maximization in a hybrid chemical plant is used as a representative case study.Fil: de Paula, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaAmerican Chemical Society2012-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/273867de Paula, Mariano; Martinez, Ernesto Carlos; Optimal Operation of Discretely Controlled Continuous Systems under Uncertainty; American Chemical Society; Industrial & Engineering Chemical Research; 51; 42; 10-2012; 13743-137640888-5885CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ie301015zinfo:eu-repo/semantics/altIdentifier/doi/10.1021/ie301015zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:40:09Zoai:ri.conicet.gov.ar:11336/273867instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:40:09.36CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Optimal Operation of Discretely Controlled Continuous Systems under Uncertainty |
| title |
Optimal Operation of Discretely Controlled Continuous Systems under Uncertainty |
| spellingShingle |
Optimal Operation of Discretely Controlled Continuous Systems under Uncertainty de Paula, Mariano Optimal Operation Discretely Controlled Continuous Systems Reinforcement Learning Uncertainty |
| title_short |
Optimal Operation of Discretely Controlled Continuous Systems under Uncertainty |
| title_full |
Optimal Operation of Discretely Controlled Continuous Systems under Uncertainty |
| title_fullStr |
Optimal Operation of Discretely Controlled Continuous Systems under Uncertainty |
| title_full_unstemmed |
Optimal Operation of Discretely Controlled Continuous Systems under Uncertainty |
| title_sort |
Optimal Operation of Discretely Controlled Continuous Systems under Uncertainty |
| dc.creator.none.fl_str_mv |
de Paula, Mariano Martinez, Ernesto Carlos |
| author |
de Paula, Mariano |
| author_facet |
de Paula, Mariano Martinez, Ernesto Carlos |
| author_role |
author |
| author2 |
Martinez, Ernesto Carlos |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Optimal Operation Discretely Controlled Continuous Systems Reinforcement Learning Uncertainty |
| topic |
Optimal Operation Discretely Controlled Continuous Systems Reinforcement Learning Uncertainty |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
Discretely controlled continuous systems constitute a special class of continuous-time hybrid dynamical systems where timely switching to alternative control modes is used for dynamic optimization in uncertain environments. Each mode implements a parametrized feedback control law until a stopping condition triggers due to the activation of a constraint related to states, controls, or disturbances. For optimal operation under uncertainty, a novel simulation-based algorithm that combinesdynamic programming with event-driven execution and Gaussian processes is proposed to learn a switching policy for mode selection. To deal with the size/dimension of the state space and a continuum of control mode parameters, Bayesian active learning is proposed using a utility function that trades off information content with policy improvement. Probabilistic models of the state transition dynamics following each mode execution are fitted upon data obtained by increasingly biasing operating conditions. Throughput maximization in a hybrid chemical plant is used as a representative case study. Fil: de Paula, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Martinez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina |
| description |
Discretely controlled continuous systems constitute a special class of continuous-time hybrid dynamical systems where timely switching to alternative control modes is used for dynamic optimization in uncertain environments. Each mode implements a parametrized feedback control law until a stopping condition triggers due to the activation of a constraint related to states, controls, or disturbances. For optimal operation under uncertainty, a novel simulation-based algorithm that combinesdynamic programming with event-driven execution and Gaussian processes is proposed to learn a switching policy for mode selection. To deal with the size/dimension of the state space and a continuum of control mode parameters, Bayesian active learning is proposed using a utility function that trades off information content with policy improvement. Probabilistic models of the state transition dynamics following each mode execution are fitted upon data obtained by increasingly biasing operating conditions. Throughput maximization in a hybrid chemical plant is used as a representative case study. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/273867 de Paula, Mariano; Martinez, Ernesto Carlos; Optimal Operation of Discretely Controlled Continuous Systems under Uncertainty; American Chemical Society; Industrial & Engineering Chemical Research; 51; 42; 10-2012; 13743-13764 0888-5885 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/273867 |
| identifier_str_mv |
de Paula, Mariano; Martinez, Ernesto Carlos; Optimal Operation of Discretely Controlled Continuous Systems under Uncertainty; American Chemical Society; Industrial & Engineering Chemical Research; 51; 42; 10-2012; 13743-13764 0888-5885 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/abs/10.1021/ie301015z info:eu-repo/semantics/altIdentifier/doi/10.1021/ie301015z |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Chemical Society |
| publisher.none.fl_str_mv |
American Chemical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597488111452160 |
| score |
12.976206 |