On the quiver with relations of a quasitilted algebra and applications

Autores
Bordino, Natalia Cristina; Fernández, Elsa Adriana; Trepode, Sonia Elisabet
Año de publicación
2016
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we discuss, in terms of quiver with relations,sufficient and necessary conditions for an algebra to be a quasitiltedalgebra. We start with an algebra with global dimension at most twoand we give a sufficient condition to be a quasitilted algebra. We showthat this condition is not necessary. In the case of a strongly simply con-nected schurian algebra, we discuss necessary conditions, and combiningboth type of conditions, we are able to analyze if some given algebra isquasitilted. As an application we obtain the quiver with relations of allthe tilted and cluster tilted algebras of Dynkin type Ep.
Fil: Bordino, Natalia Cristina. Universidad Nacional de Mar del Plata; Argentina
Fil: Fernández, Elsa Adriana. Universidad Nacional de la Patagonia. Facultad de Ingeniería. Sede Puerto Madryn; Argentina
Fil: Trepode, Sonia Elisabet. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina
Materia
quasitilted
consecutive-relations
cluster algebras
tilted algebras
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/82055

id CONICETDig_46cdc41d3807d7107156558a49e9fdd2
oai_identifier_str oai:ri.conicet.gov.ar:11336/82055
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On the quiver with relations of a quasitilted algebra and applicationsBordino, Natalia CristinaFernández, Elsa AdrianaTrepode, Sonia Elisabetquasitiltedconsecutive-relationscluster algebrastilted algebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we discuss, in terms of quiver with relations,sufficient and necessary conditions for an algebra to be a quasitiltedalgebra. We start with an algebra with global dimension at most twoand we give a sufficient condition to be a quasitilted algebra. We showthat this condition is not necessary. In the case of a strongly simply con-nected schurian algebra, we discuss necessary conditions, and combiningboth type of conditions, we are able to analyze if some given algebra isquasitilted. As an application we obtain the quiver with relations of allthe tilted and cluster tilted algebras of Dynkin type Ep.Fil: Bordino, Natalia Cristina. Universidad Nacional de Mar del Plata; ArgentinaFil: Fernández, Elsa Adriana. Universidad Nacional de la Patagonia. Facultad de Ingeniería. Sede Puerto Madryn; ArgentinaFil: Trepode, Sonia Elisabet. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; ArgentinaTaylor2016-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/82055Bordino, Natalia Cristina; Fernández, Elsa Adriana; Trepode, Sonia Elisabet; On the quiver with relations of a quasitilted algebra and applications; Taylor; Communications In Algebra; 45; 9; 12-2016; 1-150092-7872CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2016.1259417info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00927872.2016.1259417info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:47:30Zoai:ri.conicet.gov.ar:11336/82055instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:47:30.612CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On the quiver with relations of a quasitilted algebra and applications
title On the quiver with relations of a quasitilted algebra and applications
spellingShingle On the quiver with relations of a quasitilted algebra and applications
Bordino, Natalia Cristina
quasitilted
consecutive-relations
cluster algebras
tilted algebras
title_short On the quiver with relations of a quasitilted algebra and applications
title_full On the quiver with relations of a quasitilted algebra and applications
title_fullStr On the quiver with relations of a quasitilted algebra and applications
title_full_unstemmed On the quiver with relations of a quasitilted algebra and applications
title_sort On the quiver with relations of a quasitilted algebra and applications
dc.creator.none.fl_str_mv Bordino, Natalia Cristina
Fernández, Elsa Adriana
Trepode, Sonia Elisabet
author Bordino, Natalia Cristina
author_facet Bordino, Natalia Cristina
Fernández, Elsa Adriana
Trepode, Sonia Elisabet
author_role author
author2 Fernández, Elsa Adriana
Trepode, Sonia Elisabet
author2_role author
author
dc.subject.none.fl_str_mv quasitilted
consecutive-relations
cluster algebras
tilted algebras
topic quasitilted
consecutive-relations
cluster algebras
tilted algebras
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we discuss, in terms of quiver with relations,sufficient and necessary conditions for an algebra to be a quasitiltedalgebra. We start with an algebra with global dimension at most twoand we give a sufficient condition to be a quasitilted algebra. We showthat this condition is not necessary. In the case of a strongly simply con-nected schurian algebra, we discuss necessary conditions, and combiningboth type of conditions, we are able to analyze if some given algebra isquasitilted. As an application we obtain the quiver with relations of allthe tilted and cluster tilted algebras of Dynkin type Ep.
Fil: Bordino, Natalia Cristina. Universidad Nacional de Mar del Plata; Argentina
Fil: Fernández, Elsa Adriana. Universidad Nacional de la Patagonia. Facultad de Ingeniería. Sede Puerto Madryn; Argentina
Fil: Trepode, Sonia Elisabet. Universidad Nacional de Mar del Plata; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata; Argentina
description In this paper we discuss, in terms of quiver with relations,sufficient and necessary conditions for an algebra to be a quasitiltedalgebra. We start with an algebra with global dimension at most twoand we give a sufficient condition to be a quasitilted algebra. We showthat this condition is not necessary. In the case of a strongly simply con-nected schurian algebra, we discuss necessary conditions, and combiningboth type of conditions, we are able to analyze if some given algebra isquasitilted. As an application we obtain the quiver with relations of allthe tilted and cluster tilted algebras of Dynkin type Ep.
publishDate 2016
dc.date.none.fl_str_mv 2016-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/82055
Bordino, Natalia Cristina; Fernández, Elsa Adriana; Trepode, Sonia Elisabet; On the quiver with relations of a quasitilted algebra and applications; Taylor; Communications In Algebra; 45; 9; 12-2016; 1-15
0092-7872
CONICET Digital
CONICET
url http://hdl.handle.net/11336/82055
identifier_str_mv Bordino, Natalia Cristina; Fernández, Elsa Adriana; Trepode, Sonia Elisabet; On the quiver with relations of a quasitilted algebra and applications; Taylor; Communications In Algebra; 45; 9; 12-2016; 1-15
0092-7872
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2016.1259417
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00927872.2016.1259417
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor
publisher.none.fl_str_mv Taylor
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613480032763904
score 13.070432