On the representation dimension of tilted and laura algebras
- Autores
- Assem, Ibrahim; Platzeck, Maria Ines; Trepode, Sonia Elisabet
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We prove that the representation dimension of a tilted, or of a strict laura algebra, is at most three.
Fil: Assem, Ibrahim. University of Sherbrooke; Canadá
Fil: Platzeck, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Trepode, Sonia Elisabet. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina - Materia
-
ARTIN ALGEBRAS
LAURA ALGEBRAS
REPRESENTATION DIMENSION
TILTED AND QUASI-TILTED ALGEBRAS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/96059
Ver los metadatos del registro completo
id |
CONICETDig_6b182722424ea5197e24d4874655fdac |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/96059 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the representation dimension of tilted and laura algebrasAssem, IbrahimPlatzeck, Maria InesTrepode, Sonia ElisabetARTIN ALGEBRASLAURA ALGEBRASREPRESENTATION DIMENSIONTILTED AND QUASI-TILTED ALGEBRAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove that the representation dimension of a tilted, or of a strict laura algebra, is at most three.Fil: Assem, Ibrahim. University of Sherbrooke; CanadáFil: Platzeck, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Trepode, Sonia Elisabet. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaAcademic Press Inc Elsevier Science2006-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/96059Assem, Ibrahim; Platzeck, Maria Ines; Trepode, Sonia Elisabet; On the representation dimension of tilted and laura algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 296; 2; 2-2006; 426-4390021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869306000093info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2004.12.024info:eu-repo/semantics/altIdentifier/url/http://prospero.dmat.usherbrooke.ca/ibrahim/publications/On_the_representation_dimension_of_tilted_and_laura_algebras.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:36:10Zoai:ri.conicet.gov.ar:11336/96059instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:36:11.016CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the representation dimension of tilted and laura algebras |
title |
On the representation dimension of tilted and laura algebras |
spellingShingle |
On the representation dimension of tilted and laura algebras Assem, Ibrahim ARTIN ALGEBRAS LAURA ALGEBRAS REPRESENTATION DIMENSION TILTED AND QUASI-TILTED ALGEBRAS |
title_short |
On the representation dimension of tilted and laura algebras |
title_full |
On the representation dimension of tilted and laura algebras |
title_fullStr |
On the representation dimension of tilted and laura algebras |
title_full_unstemmed |
On the representation dimension of tilted and laura algebras |
title_sort |
On the representation dimension of tilted and laura algebras |
dc.creator.none.fl_str_mv |
Assem, Ibrahim Platzeck, Maria Ines Trepode, Sonia Elisabet |
author |
Assem, Ibrahim |
author_facet |
Assem, Ibrahim Platzeck, Maria Ines Trepode, Sonia Elisabet |
author_role |
author |
author2 |
Platzeck, Maria Ines Trepode, Sonia Elisabet |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ARTIN ALGEBRAS LAURA ALGEBRAS REPRESENTATION DIMENSION TILTED AND QUASI-TILTED ALGEBRAS |
topic |
ARTIN ALGEBRAS LAURA ALGEBRAS REPRESENTATION DIMENSION TILTED AND QUASI-TILTED ALGEBRAS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We prove that the representation dimension of a tilted, or of a strict laura algebra, is at most three. Fil: Assem, Ibrahim. University of Sherbrooke; Canadá Fil: Platzeck, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina Fil: Trepode, Sonia Elisabet. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina |
description |
We prove that the representation dimension of a tilted, or of a strict laura algebra, is at most three. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/96059 Assem, Ibrahim; Platzeck, Maria Ines; Trepode, Sonia Elisabet; On the representation dimension of tilted and laura algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 296; 2; 2-2006; 426-439 0021-8693 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/96059 |
identifier_str_mv |
Assem, Ibrahim; Platzeck, Maria Ines; Trepode, Sonia Elisabet; On the representation dimension of tilted and laura algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 296; 2; 2-2006; 426-439 0021-8693 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869306000093 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2004.12.024 info:eu-repo/semantics/altIdentifier/url/http://prospero.dmat.usherbrooke.ca/ibrahim/publications/On_the_representation_dimension_of_tilted_and_laura_algebras.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613131981029376 |
score |
13.260194 |