Cluster Tilted Algebras with a Cyclically Oriented Quive

Autores
Barot, Michael; Trepode, Sonia Elisabet
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In association with a finite dimensional algebra A of global dimension two, we consider the endomorphism algebra of A, viewed as an object in the triangulated hull of the orbit category of the bounded derived category, in the sense of Amiot. We characterize the algebras A of global dimension two such that its endomorphism algebra is isomorphic to a cluster-tilted algebra with a cyclically oriented quiver. Furthermore, in the case that the cluster tilted algebra with a cyclically oriented quiver is of Dynkin or extended Dynkin type then A is derived equivalent to a hereditary algebra of the same type.
Fil: Barot, Michael. Universidad Nacional Autónoma de México; México
Fil: Trepode, Sonia Elisabet. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Materia
Admissible Cut
Cluster Tiled Algebrax
Cluster Tiled Algebra
Cyclically Oriented Quiver
Derived Equivalent
Extension Relation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/25364

id CONICETDig_4789b0d37c84f488c593a402e2362086
oai_identifier_str oai:ri.conicet.gov.ar:11336/25364
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Cluster Tilted Algebras with a Cyclically Oriented QuiveBarot, MichaelTrepode, Sonia ElisabetAdmissible CutCluster Tiled AlgebraxCluster Tiled AlgebraCyclically Oriented QuiverDerived EquivalentExtension Relationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In association with a finite dimensional algebra A of global dimension two, we consider the endomorphism algebra of A, viewed as an object in the triangulated hull of the orbit category of the bounded derived category, in the sense of Amiot. We characterize the algebras A of global dimension two such that its endomorphism algebra is isomorphic to a cluster-tilted algebra with a cyclically oriented quiver. Furthermore, in the case that the cluster tilted algebra with a cyclically oriented quiver is of Dynkin or extended Dynkin type then A is derived equivalent to a hereditary algebra of the same type.Fil: Barot, Michael. Universidad Nacional Autónoma de México; MéxicoFil: Trepode, Sonia Elisabet. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaTaylor2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/25364Barot, Michael; Trepode, Sonia Elisabet; Cluster Tilted Algebras with a Cyclically Oriented Quive; Taylor ; Communications In Algebra; 41; 10; 10-2013; 3613-36280092-7872CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2012.673665info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/full/10.1080/00927872.2012.673665info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:42:56Zoai:ri.conicet.gov.ar:11336/25364instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:42:56.378CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Cluster Tilted Algebras with a Cyclically Oriented Quive
title Cluster Tilted Algebras with a Cyclically Oriented Quive
spellingShingle Cluster Tilted Algebras with a Cyclically Oriented Quive
Barot, Michael
Admissible Cut
Cluster Tiled Algebrax
Cluster Tiled Algebra
Cyclically Oriented Quiver
Derived Equivalent
Extension Relation
title_short Cluster Tilted Algebras with a Cyclically Oriented Quive
title_full Cluster Tilted Algebras with a Cyclically Oriented Quive
title_fullStr Cluster Tilted Algebras with a Cyclically Oriented Quive
title_full_unstemmed Cluster Tilted Algebras with a Cyclically Oriented Quive
title_sort Cluster Tilted Algebras with a Cyclically Oriented Quive
dc.creator.none.fl_str_mv Barot, Michael
Trepode, Sonia Elisabet
author Barot, Michael
author_facet Barot, Michael
Trepode, Sonia Elisabet
author_role author
author2 Trepode, Sonia Elisabet
author2_role author
dc.subject.none.fl_str_mv Admissible Cut
Cluster Tiled Algebrax
Cluster Tiled Algebra
Cyclically Oriented Quiver
Derived Equivalent
Extension Relation
topic Admissible Cut
Cluster Tiled Algebrax
Cluster Tiled Algebra
Cyclically Oriented Quiver
Derived Equivalent
Extension Relation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In association with a finite dimensional algebra A of global dimension two, we consider the endomorphism algebra of A, viewed as an object in the triangulated hull of the orbit category of the bounded derived category, in the sense of Amiot. We characterize the algebras A of global dimension two such that its endomorphism algebra is isomorphic to a cluster-tilted algebra with a cyclically oriented quiver. Furthermore, in the case that the cluster tilted algebra with a cyclically oriented quiver is of Dynkin or extended Dynkin type then A is derived equivalent to a hereditary algebra of the same type.
Fil: Barot, Michael. Universidad Nacional Autónoma de México; México
Fil: Trepode, Sonia Elisabet. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
description In association with a finite dimensional algebra A of global dimension two, we consider the endomorphism algebra of A, viewed as an object in the triangulated hull of the orbit category of the bounded derived category, in the sense of Amiot. We characterize the algebras A of global dimension two such that its endomorphism algebra is isomorphic to a cluster-tilted algebra with a cyclically oriented quiver. Furthermore, in the case that the cluster tilted algebra with a cyclically oriented quiver is of Dynkin or extended Dynkin type then A is derived equivalent to a hereditary algebra of the same type.
publishDate 2013
dc.date.none.fl_str_mv 2013-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/25364
Barot, Michael; Trepode, Sonia Elisabet; Cluster Tilted Algebras with a Cyclically Oriented Quive; Taylor ; Communications In Algebra; 41; 10; 10-2013; 3613-3628
0092-7872
CONICET Digital
CONICET
url http://hdl.handle.net/11336/25364
identifier_str_mv Barot, Michael; Trepode, Sonia Elisabet; Cluster Tilted Algebras with a Cyclically Oriented Quive; Taylor ; Communications In Algebra; 41; 10; 10-2013; 3613-3628
0092-7872
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2012.673665
info:eu-repo/semantics/altIdentifier/url/http://www.tandfonline.com/doi/full/10.1080/00927872.2012.673665
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor
publisher.none.fl_str_mv Taylor
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613351141801984
score 13.070432