Traces for fractional Sobolev spaces with variable exponents
- Autores
- del Pezzo, Leandro Martin; Rossi, Julio Daniel
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this note we prove a trace theorem in fractional spaces with variable exponents. To be more precise, we show that if p: Ω × Ω → (1,∞) and q : ∂Ω → (1,∞) are continuous functions such that (n − 1)p(x, x) n − sp(x, x) > q(x) in ∂Ω ∩ {x ∈ Ω: n − sp(x, x) > 0}, then the inequality kfkL q(·) (∂Ω) ≤ C n kfkL p¯(·) (Ω) + [f]s,p(·,·) o holds. Here ¯p(x) = p(x, x) and [f]s,p(·,·) denotes the fractional seminorm with variable exponent, that is given by [f]s,p(·,·) := inf λ > 0: Z Ω Z Ω |f(x) − f(y)| p(x,y) λp(x,y) |x − y| n+sp(x,y) dxdy < 1 and kfkL q(·) (∂Ω) and kfkL p¯(·) (Ω) are the usual Lebesgue norms with variable exponent.
Fil: del Pezzo, Leandro Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; Argentina
Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
TRACES
FRACTIONAL
SOBOLEV - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/75218
Ver los metadatos del registro completo
id |
CONICETDig_143c74375b1e0793e5cedd7c5d940f46 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/75218 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Traces for fractional Sobolev spaces with variable exponentsdel Pezzo, Leandro MartinRossi, Julio DanielTRACESFRACTIONALSOBOLEVhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this note we prove a trace theorem in fractional spaces with variable exponents. To be more precise, we show that if p: Ω × Ω → (1,∞) and q : ∂Ω → (1,∞) are continuous functions such that (n − 1)p(x, x) n − sp(x, x) > q(x) in ∂Ω ∩ {x ∈ Ω: n − sp(x, x) > 0}, then the inequality kfkL q(·) (∂Ω) ≤ C n kfkL p¯(·) (Ω) + [f]s,p(·,·) o holds. Here ¯p(x) = p(x, x) and [f]s,p(·,·) denotes the fractional seminorm with variable exponent, that is given by [f]s,p(·,·) := inf λ > 0: Z Ω Z Ω |f(x) − f(y)| p(x,y) λp(x,y) |x − y| n+sp(x,y) dxdy < 1 and kfkL q(·) (∂Ω) and kfkL p¯(·) (Ω) are the usual Lebesgue norms with variable exponent.Fil: del Pezzo, Leandro Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; ArgentinaFil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaTusi Mathematical Research Group2017-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/75218del Pezzo, Leandro Martin; Rossi, Julio Daniel; Traces for fractional Sobolev spaces with variable exponents; Tusi Mathematical Research Group; Advances in Operator Theory; 2; 4; 9-2017; 435-4462538-225XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/ 10.22034/aot.1704-1152info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.aot/1512431720info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:07:56Zoai:ri.conicet.gov.ar:11336/75218instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:07:56.701CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Traces for fractional Sobolev spaces with variable exponents |
title |
Traces for fractional Sobolev spaces with variable exponents |
spellingShingle |
Traces for fractional Sobolev spaces with variable exponents del Pezzo, Leandro Martin TRACES FRACTIONAL SOBOLEV |
title_short |
Traces for fractional Sobolev spaces with variable exponents |
title_full |
Traces for fractional Sobolev spaces with variable exponents |
title_fullStr |
Traces for fractional Sobolev spaces with variable exponents |
title_full_unstemmed |
Traces for fractional Sobolev spaces with variable exponents |
title_sort |
Traces for fractional Sobolev spaces with variable exponents |
dc.creator.none.fl_str_mv |
del Pezzo, Leandro Martin Rossi, Julio Daniel |
author |
del Pezzo, Leandro Martin |
author_facet |
del Pezzo, Leandro Martin Rossi, Julio Daniel |
author_role |
author |
author2 |
Rossi, Julio Daniel |
author2_role |
author |
dc.subject.none.fl_str_mv |
TRACES FRACTIONAL SOBOLEV |
topic |
TRACES FRACTIONAL SOBOLEV |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this note we prove a trace theorem in fractional spaces with variable exponents. To be more precise, we show that if p: Ω × Ω → (1,∞) and q : ∂Ω → (1,∞) are continuous functions such that (n − 1)p(x, x) n − sp(x, x) > q(x) in ∂Ω ∩ {x ∈ Ω: n − sp(x, x) > 0}, then the inequality kfkL q(·) (∂Ω) ≤ C n kfkL p¯(·) (Ω) + [f]s,p(·,·) o holds. Here ¯p(x) = p(x, x) and [f]s,p(·,·) denotes the fractional seminorm with variable exponent, that is given by [f]s,p(·,·) := inf λ > 0: Z Ω Z Ω |f(x) − f(y)| p(x,y) λp(x,y) |x − y| n+sp(x,y) dxdy < 1 and kfkL q(·) (∂Ω) and kfkL p¯(·) (Ω) are the usual Lebesgue norms with variable exponent. Fil: del Pezzo, Leandro Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; Argentina Fil: Rossi, Julio Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
In this note we prove a trace theorem in fractional spaces with variable exponents. To be more precise, we show that if p: Ω × Ω → (1,∞) and q : ∂Ω → (1,∞) are continuous functions such that (n − 1)p(x, x) n − sp(x, x) > q(x) in ∂Ω ∩ {x ∈ Ω: n − sp(x, x) > 0}, then the inequality kfkL q(·) (∂Ω) ≤ C n kfkL p¯(·) (Ω) + [f]s,p(·,·) o holds. Here ¯p(x) = p(x, x) and [f]s,p(·,·) denotes the fractional seminorm with variable exponent, that is given by [f]s,p(·,·) := inf λ > 0: Z Ω Z Ω |f(x) − f(y)| p(x,y) λp(x,y) |x − y| n+sp(x,y) dxdy < 1 and kfkL q(·) (∂Ω) and kfkL p¯(·) (Ω) are the usual Lebesgue norms with variable exponent. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/75218 del Pezzo, Leandro Martin; Rossi, Julio Daniel; Traces for fractional Sobolev spaces with variable exponents; Tusi Mathematical Research Group; Advances in Operator Theory; 2; 4; 9-2017; 435-446 2538-225X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/75218 |
identifier_str_mv |
del Pezzo, Leandro Martin; Rossi, Julio Daniel; Traces for fractional Sobolev spaces with variable exponents; Tusi Mathematical Research Group; Advances in Operator Theory; 2; 4; 9-2017; 435-446 2538-225X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/ 10.22034/aot.1704-1152 info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.aot/1512431720 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Tusi Mathematical Research Group |
publisher.none.fl_str_mv |
Tusi Mathematical Research Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270024409022464 |
score |
13.13397 |