Prediction of tenderness in bovine longissimus thoracis et lumborum muscles using Raman spectroscopy
- Autores
- Coria, Maria Sumampa; Castaño Ledesma, María Sofía; Gomez Rojas, Jorge Raul; Grigioni, Gabriela Maria; Palma, Gustavo Adolfo; Borsarelli, Claudio Darío
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Objective: This study was conducted to evaluate Raman spectroscopy technique as a noninvasive tool to predict meat quality traits on Braford longissimus thoracis et lumborum muscle. Methods: Thirty samples of muscle from Braford steers were analyzed by classical meat quality techniques and by Raman spectroscopy with 785 nm laser excitation. Water holding capacity (WHC), intramuscular fat content (IMF), cooking loss (CL), and texture profile analysis recording hardness, cohesiveness, and chewiness were determined, along with fiber diameter and sarcomere length by scanning electron microscopy. Warner-Bratzler shear force (WBSF) analysis was used to differentiate tender and tough meat groups. Results: Higher values of cohesiveness and CL, together with lower values of WHC, IMF, and shorter sarcomere were obtained for tender meat samples than for the tougher ones. Raman spectra analysis allows tender and tough sample differentiation. The correlation between the quality attributes predicted by Raman and the physical measurements resulted in values of R2 = 0.69 for hardness and 0,58 for WBSF. Pearson's correlation coefficient of hardness (r = 0.84) and WBSF (r = 0.79) parameters with the phenylalanine Raman signal at 1,003 cm–1, suggests that the content of this amino acid could explain the differences between samples. Conclusion: Raman spectroscopy with 785 nm laser excitation is a suitable and accurate technique to identify beef with different quality attributes.
Fil: Coria, Maria Sumampa. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; Argentina
Fil: Castaño Ledesma, María Sofía. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; Argentina
Fil: Gomez Rojas, Jorge Raul. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; Argentina
Fil: Grigioni, Gabriela Maria. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Agroindustria. Instituto de Tecnología de Alimentos. Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables; Argentina. Universidad de Morón. Facultad de Agronomía y Ciencias Agroalimentarias; Argentina
Fil: Palma, Gustavo Adolfo. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; Argentina
Fil: Borsarelli, Claudio Darío. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; Argentina. Universidad Nacional de Santiago del Estero. Facultad de Agronomía y Agroindustrias. Instituto de Ciencias Químicas; Argentina - Materia
-
CHEMIOMETRIC ANALYSIS
MEAT QUALITY
RAMAN SPECTROSCOPY
TENDERNESS PREDICTION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/228901
Ver los metadatos del registro completo
| id |
CONICETDig_45afaf359570d4448b95fe630a3ca987 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/228901 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Prediction of tenderness in bovine longissimus thoracis et lumborum muscles using Raman spectroscopyCoria, Maria SumampaCastaño Ledesma, María SofíaGomez Rojas, Jorge RaulGrigioni, Gabriela MariaPalma, Gustavo AdolfoBorsarelli, Claudio DaríoCHEMIOMETRIC ANALYSISMEAT QUALITYRAMAN SPECTROSCOPYTENDERNESS PREDICTIONhttps://purl.org/becyt/ford/4.4https://purl.org/becyt/ford/4Objective: This study was conducted to evaluate Raman spectroscopy technique as a noninvasive tool to predict meat quality traits on Braford longissimus thoracis et lumborum muscle. Methods: Thirty samples of muscle from Braford steers were analyzed by classical meat quality techniques and by Raman spectroscopy with 785 nm laser excitation. Water holding capacity (WHC), intramuscular fat content (IMF), cooking loss (CL), and texture profile analysis recording hardness, cohesiveness, and chewiness were determined, along with fiber diameter and sarcomere length by scanning electron microscopy. Warner-Bratzler shear force (WBSF) analysis was used to differentiate tender and tough meat groups. Results: Higher values of cohesiveness and CL, together with lower values of WHC, IMF, and shorter sarcomere were obtained for tender meat samples than for the tougher ones. Raman spectra analysis allows tender and tough sample differentiation. The correlation between the quality attributes predicted by Raman and the physical measurements resulted in values of R2 = 0.69 for hardness and 0,58 for WBSF. Pearson's correlation coefficient of hardness (r = 0.84) and WBSF (r = 0.79) parameters with the phenylalanine Raman signal at 1,003 cm–1, suggests that the content of this amino acid could explain the differences between samples. Conclusion: Raman spectroscopy with 785 nm laser excitation is a suitable and accurate technique to identify beef with different quality attributes.Fil: Coria, Maria Sumampa. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; ArgentinaFil: Castaño Ledesma, María Sofía. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; ArgentinaFil: Gomez Rojas, Jorge Raul. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; ArgentinaFil: Grigioni, Gabriela Maria. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Agroindustria. Instituto de Tecnología de Alimentos. Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables; Argentina. Universidad de Morón. Facultad de Agronomía y Ciencias Agroalimentarias; ArgentinaFil: Palma, Gustavo Adolfo. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; ArgentinaFil: Borsarelli, Claudio Darío. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; Argentina. Universidad Nacional de Santiago del Estero. Facultad de Agronomía y Agroindustrias. Instituto de Ciencias Químicas; ArgentinaAsian-Australasian Association of Animal Production Societies2023-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/228901Coria, Maria Sumampa; Castaño Ledesma, María Sofía; Gomez Rojas, Jorge Raul; Grigioni, Gabriela Maria; Palma, Gustavo Adolfo; et al.; Prediction of tenderness in bovine longissimus thoracis et lumborum muscles using Raman spectroscopy; Asian-Australasian Association of Animal Production Societies; Animal Bioscience; 36; 9; 10-2023; 1435-14442765-01892765-0235CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.animbiosci.org/journal/view.php?doi=10.5713/ab.22.0451info:eu-repo/semantics/altIdentifier/doi/10.5713/ab.22.0451info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:15:44Zoai:ri.conicet.gov.ar:11336/228901instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:15:44.67CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Prediction of tenderness in bovine longissimus thoracis et lumborum muscles using Raman spectroscopy |
| title |
Prediction of tenderness in bovine longissimus thoracis et lumborum muscles using Raman spectroscopy |
| spellingShingle |
Prediction of tenderness in bovine longissimus thoracis et lumborum muscles using Raman spectroscopy Coria, Maria Sumampa CHEMIOMETRIC ANALYSIS MEAT QUALITY RAMAN SPECTROSCOPY TENDERNESS PREDICTION |
| title_short |
Prediction of tenderness in bovine longissimus thoracis et lumborum muscles using Raman spectroscopy |
| title_full |
Prediction of tenderness in bovine longissimus thoracis et lumborum muscles using Raman spectroscopy |
| title_fullStr |
Prediction of tenderness in bovine longissimus thoracis et lumborum muscles using Raman spectroscopy |
| title_full_unstemmed |
Prediction of tenderness in bovine longissimus thoracis et lumborum muscles using Raman spectroscopy |
| title_sort |
Prediction of tenderness in bovine longissimus thoracis et lumborum muscles using Raman spectroscopy |
| dc.creator.none.fl_str_mv |
Coria, Maria Sumampa Castaño Ledesma, María Sofía Gomez Rojas, Jorge Raul Grigioni, Gabriela Maria Palma, Gustavo Adolfo Borsarelli, Claudio Darío |
| author |
Coria, Maria Sumampa |
| author_facet |
Coria, Maria Sumampa Castaño Ledesma, María Sofía Gomez Rojas, Jorge Raul Grigioni, Gabriela Maria Palma, Gustavo Adolfo Borsarelli, Claudio Darío |
| author_role |
author |
| author2 |
Castaño Ledesma, María Sofía Gomez Rojas, Jorge Raul Grigioni, Gabriela Maria Palma, Gustavo Adolfo Borsarelli, Claudio Darío |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
CHEMIOMETRIC ANALYSIS MEAT QUALITY RAMAN SPECTROSCOPY TENDERNESS PREDICTION |
| topic |
CHEMIOMETRIC ANALYSIS MEAT QUALITY RAMAN SPECTROSCOPY TENDERNESS PREDICTION |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/4.4 https://purl.org/becyt/ford/4 |
| dc.description.none.fl_txt_mv |
Objective: This study was conducted to evaluate Raman spectroscopy technique as a noninvasive tool to predict meat quality traits on Braford longissimus thoracis et lumborum muscle. Methods: Thirty samples of muscle from Braford steers were analyzed by classical meat quality techniques and by Raman spectroscopy with 785 nm laser excitation. Water holding capacity (WHC), intramuscular fat content (IMF), cooking loss (CL), and texture profile analysis recording hardness, cohesiveness, and chewiness were determined, along with fiber diameter and sarcomere length by scanning electron microscopy. Warner-Bratzler shear force (WBSF) analysis was used to differentiate tender and tough meat groups. Results: Higher values of cohesiveness and CL, together with lower values of WHC, IMF, and shorter sarcomere were obtained for tender meat samples than for the tougher ones. Raman spectra analysis allows tender and tough sample differentiation. The correlation between the quality attributes predicted by Raman and the physical measurements resulted in values of R2 = 0.69 for hardness and 0,58 for WBSF. Pearson's correlation coefficient of hardness (r = 0.84) and WBSF (r = 0.79) parameters with the phenylalanine Raman signal at 1,003 cm–1, suggests that the content of this amino acid could explain the differences between samples. Conclusion: Raman spectroscopy with 785 nm laser excitation is a suitable and accurate technique to identify beef with different quality attributes. Fil: Coria, Maria Sumampa. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; Argentina Fil: Castaño Ledesma, María Sofía. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; Argentina Fil: Gomez Rojas, Jorge Raul. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; Argentina Fil: Grigioni, Gabriela Maria. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Agroindustria. Instituto de Tecnología de Alimentos. Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables; Argentina. Universidad de Morón. Facultad de Agronomía y Ciencias Agroalimentarias; Argentina Fil: Palma, Gustavo Adolfo. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; Argentina Fil: Borsarelli, Claudio Darío. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; Argentina. Universidad Nacional de Santiago del Estero. Facultad de Agronomía y Agroindustrias. Instituto de Ciencias Químicas; Argentina |
| description |
Objective: This study was conducted to evaluate Raman spectroscopy technique as a noninvasive tool to predict meat quality traits on Braford longissimus thoracis et lumborum muscle. Methods: Thirty samples of muscle from Braford steers were analyzed by classical meat quality techniques and by Raman spectroscopy with 785 nm laser excitation. Water holding capacity (WHC), intramuscular fat content (IMF), cooking loss (CL), and texture profile analysis recording hardness, cohesiveness, and chewiness were determined, along with fiber diameter and sarcomere length by scanning electron microscopy. Warner-Bratzler shear force (WBSF) analysis was used to differentiate tender and tough meat groups. Results: Higher values of cohesiveness and CL, together with lower values of WHC, IMF, and shorter sarcomere were obtained for tender meat samples than for the tougher ones. Raman spectra analysis allows tender and tough sample differentiation. The correlation between the quality attributes predicted by Raman and the physical measurements resulted in values of R2 = 0.69 for hardness and 0,58 for WBSF. Pearson's correlation coefficient of hardness (r = 0.84) and WBSF (r = 0.79) parameters with the phenylalanine Raman signal at 1,003 cm–1, suggests that the content of this amino acid could explain the differences between samples. Conclusion: Raman spectroscopy with 785 nm laser excitation is a suitable and accurate technique to identify beef with different quality attributes. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/228901 Coria, Maria Sumampa; Castaño Ledesma, María Sofía; Gomez Rojas, Jorge Raul; Grigioni, Gabriela Maria; Palma, Gustavo Adolfo; et al.; Prediction of tenderness in bovine longissimus thoracis et lumborum muscles using Raman spectroscopy; Asian-Australasian Association of Animal Production Societies; Animal Bioscience; 36; 9; 10-2023; 1435-1444 2765-0189 2765-0235 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/228901 |
| identifier_str_mv |
Coria, Maria Sumampa; Castaño Ledesma, María Sofía; Gomez Rojas, Jorge Raul; Grigioni, Gabriela Maria; Palma, Gustavo Adolfo; et al.; Prediction of tenderness in bovine longissimus thoracis et lumborum muscles using Raman spectroscopy; Asian-Australasian Association of Animal Production Societies; Animal Bioscience; 36; 9; 10-2023; 1435-1444 2765-0189 2765-0235 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.animbiosci.org/journal/view.php?doi=10.5713/ab.22.0451 info:eu-repo/semantics/altIdentifier/doi/10.5713/ab.22.0451 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Asian-Australasian Association of Animal Production Societies |
| publisher.none.fl_str_mv |
Asian-Australasian Association of Animal Production Societies |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781595747352576 |
| score |
12.982451 |