Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series

Autores
Rubiolo, Mariano; Milone, Diego Humberto; Stegmayer, Georgina
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Discovering gene regulatory networks from data is one of the most studied topics in recent years. Neural networks can be successfully used to infer an underlying gene network by modeling expression profiles as times series. This work proposes a novel method based on a pool of neural networks for obtaining a gene regulatory network from a gene expression dataset. They are used for modeling each possible interaction between pairs of genes in the dataset, and a set of mining rules is applied to accurately detect the subjacent relations among genes. The results obtained on artificial and real datasets confirm the method effectiveness for discovering regulatory networks from a proper modeling of the temporal dynamics of gene expression profiles.
Fil: Rubiolo, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación y Desarrollo de Ingeniería en Sistemas de Información; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Materia
Gene Profiles
Gene Regulatory Networks
Neural Networks
Times Series Data
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/51843

id CONICETDig_adccaa10bb5c845a13e801aa5e20a7ed
oai_identifier_str oai:ri.conicet.gov.ar:11336/51843
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Mining Gene Regulatory Networks by Neural Modeling of Expression Time-SeriesRubiolo, MarianoMilone, Diego HumbertoStegmayer, GeorginaGene ProfilesGene Regulatory NetworksNeural NetworksTimes Series Datahttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1Discovering gene regulatory networks from data is one of the most studied topics in recent years. Neural networks can be successfully used to infer an underlying gene network by modeling expression profiles as times series. This work proposes a novel method based on a pool of neural networks for obtaining a gene regulatory network from a gene expression dataset. They are used for modeling each possible interaction between pairs of genes in the dataset, and a set of mining rules is applied to accurately detect the subjacent relations among genes. The results obtained on artificial and real datasets confirm the method effectiveness for discovering regulatory networks from a proper modeling of the temporal dynamics of gene expression profiles.Fil: Rubiolo, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación y Desarrollo de Ingeniería en Sistemas de Información; ArgentinaFil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaIEEE Computer Society2015-11info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/51843Rubiolo, Mariano; Milone, Diego Humberto; Stegmayer, Georgina; Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series; IEEE Computer Society; Ieee-acm Transactions On Computational Biology And Bioinformatics; 12; 6; 11-2015; 1365-13731545-5963CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/7080870/info:eu-repo/semantics/altIdentifier/doi/10.1109/TCBB.2015.2420551info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:51Zoai:ri.conicet.gov.ar:11336/51843instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:52.228CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series
title Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series
spellingShingle Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series
Rubiolo, Mariano
Gene Profiles
Gene Regulatory Networks
Neural Networks
Times Series Data
title_short Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series
title_full Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series
title_fullStr Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series
title_full_unstemmed Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series
title_sort Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series
dc.creator.none.fl_str_mv Rubiolo, Mariano
Milone, Diego Humberto
Stegmayer, Georgina
author Rubiolo, Mariano
author_facet Rubiolo, Mariano
Milone, Diego Humberto
Stegmayer, Georgina
author_role author
author2 Milone, Diego Humberto
Stegmayer, Georgina
author2_role author
author
dc.subject.none.fl_str_mv Gene Profiles
Gene Regulatory Networks
Neural Networks
Times Series Data
topic Gene Profiles
Gene Regulatory Networks
Neural Networks
Times Series Data
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.2
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Discovering gene regulatory networks from data is one of the most studied topics in recent years. Neural networks can be successfully used to infer an underlying gene network by modeling expression profiles as times series. This work proposes a novel method based on a pool of neural networks for obtaining a gene regulatory network from a gene expression dataset. They are used for modeling each possible interaction between pairs of genes in the dataset, and a set of mining rules is applied to accurately detect the subjacent relations among genes. The results obtained on artificial and real datasets confirm the method effectiveness for discovering regulatory networks from a proper modeling of the temporal dynamics of gene expression profiles.
Fil: Rubiolo, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Centro de Investigación y Desarrollo de Ingeniería en Sistemas de Información; Argentina
Fil: Milone, Diego Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
Fil: Stegmayer, Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina
description Discovering gene regulatory networks from data is one of the most studied topics in recent years. Neural networks can be successfully used to infer an underlying gene network by modeling expression profiles as times series. This work proposes a novel method based on a pool of neural networks for obtaining a gene regulatory network from a gene expression dataset. They are used for modeling each possible interaction between pairs of genes in the dataset, and a set of mining rules is applied to accurately detect the subjacent relations among genes. The results obtained on artificial and real datasets confirm the method effectiveness for discovering regulatory networks from a proper modeling of the temporal dynamics of gene expression profiles.
publishDate 2015
dc.date.none.fl_str_mv 2015-11
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/51843
Rubiolo, Mariano; Milone, Diego Humberto; Stegmayer, Georgina; Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series; IEEE Computer Society; Ieee-acm Transactions On Computational Biology And Bioinformatics; 12; 6; 11-2015; 1365-1373
1545-5963
CONICET Digital
CONICET
url http://hdl.handle.net/11336/51843
identifier_str_mv Rubiolo, Mariano; Milone, Diego Humberto; Stegmayer, Georgina; Mining Gene Regulatory Networks by Neural Modeling of Expression Time-Series; IEEE Computer Society; Ieee-acm Transactions On Computational Biology And Bioinformatics; 12; 6; 11-2015; 1365-1373
1545-5963
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://ieeexplore.ieee.org/document/7080870/
info:eu-repo/semantics/altIdentifier/doi/10.1109/TCBB.2015.2420551
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv IEEE Computer Society
publisher.none.fl_str_mv IEEE Computer Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613433926877184
score 13.070432