Automated regression of bioreactor models using a Bayesian approach for parallel cultivations in robotic platforms
- Autores
- Luna, Martín Francisco; Mione, Federico Martin; Kaspersetz, Lucas; Neubauer, Peter; Martínez, Ernesto Carlos; Cruz Bournazou, M. Nicolas
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Mathematical models of bioreactors are powerful tools that aid in the analysis and prediction of process operation. However, the complex behavior of microorganisms makes modelling of biological processes a particularly challenging task, especially in the early developmental stages when data and knowledge are scarce. As a result, bioreactor models may perform poorly due to structural errors or high uncertainty in their parameterization. Here, we present a method for automated dynamic model regression based on a Bayesian approach that can be applied in the operation of laboratory robotic platforms to perform both parameter estimation and state predictions for a given experimental design. Starting with wide distributions over parameters (prior knowledge), the model is updated as new data is generated and is then used to predict the evolution of the experiment. The proposed method is tested with data from several parallel cultivations from a 24 mini-bioreactors platform containing an Escherichia coli strain operating in fed-batch mode. The results highlight both the versatility of the approach to estimate parameter distribution as well as to predict the state evolution.
Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Mione, Federico Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Kaspersetz, Lucas. Technishe Universitat Berlin; Alemania
Fil: Neubauer, Peter. Technishe Universitat Berlin; Alemania
Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina
Fil: Cruz Bournazou, M. Nicolas. Technishe Universitat Berlin; Alemania - Materia
-
Variational Bayesian inference
Bioprocess modelling
Robotic platform
Laboratory Automation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/273516
Ver los metadatos del registro completo
| id |
CONICETDig_43fde6686083575e2d0c33aa90c3b104 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/273516 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Automated regression of bioreactor models using a Bayesian approach for parallel cultivations in robotic platformsLuna, Martín FranciscoMione, Federico MartinKaspersetz, LucasNeubauer, PeterMartínez, Ernesto CarlosCruz Bournazou, M. NicolasVariational Bayesian inferenceBioprocess modellingRobotic platformLaboratory Automationhttps://purl.org/becyt/ford/2.9https://purl.org/becyt/ford/2Mathematical models of bioreactors are powerful tools that aid in the analysis and prediction of process operation. However, the complex behavior of microorganisms makes modelling of biological processes a particularly challenging task, especially in the early developmental stages when data and knowledge are scarce. As a result, bioreactor models may perform poorly due to structural errors or high uncertainty in their parameterization. Here, we present a method for automated dynamic model regression based on a Bayesian approach that can be applied in the operation of laboratory robotic platforms to perform both parameter estimation and state predictions for a given experimental design. Starting with wide distributions over parameters (prior knowledge), the model is updated as new data is generated and is then used to predict the evolution of the experiment. The proposed method is tested with data from several parallel cultivations from a 24 mini-bioreactors platform containing an Escherichia coli strain operating in fed-batch mode. The results highlight both the versatility of the approach to estimate parameter distribution as well as to predict the state evolution.Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Mione, Federico Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Kaspersetz, Lucas. Technishe Universitat Berlin; AlemaniaFil: Neubauer, Peter. Technishe Universitat Berlin; AlemaniaFil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; ArgentinaFil: Cruz Bournazou, M. Nicolas. Technishe Universitat Berlin; AlemaniaElsevier Science SA2025-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/273516Luna, Martín Francisco; Mione, Federico Martin; Kaspersetz, Lucas; Neubauer, Peter; Martínez, Ernesto Carlos; et al.; Automated regression of bioreactor models using a Bayesian approach for parallel cultivations in robotic platforms; Elsevier Science SA; Biochemical Engineering Journal; 219; 3-2025; 1-141369-703XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1369703X25001032info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bej.2025.109729info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-05T09:44:21Zoai:ri.conicet.gov.ar:11336/273516instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-05 09:44:22.155CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Automated regression of bioreactor models using a Bayesian approach for parallel cultivations in robotic platforms |
| title |
Automated regression of bioreactor models using a Bayesian approach for parallel cultivations in robotic platforms |
| spellingShingle |
Automated regression of bioreactor models using a Bayesian approach for parallel cultivations in robotic platforms Luna, Martín Francisco Variational Bayesian inference Bioprocess modelling Robotic platform Laboratory Automation |
| title_short |
Automated regression of bioreactor models using a Bayesian approach for parallel cultivations in robotic platforms |
| title_full |
Automated regression of bioreactor models using a Bayesian approach for parallel cultivations in robotic platforms |
| title_fullStr |
Automated regression of bioreactor models using a Bayesian approach for parallel cultivations in robotic platforms |
| title_full_unstemmed |
Automated regression of bioreactor models using a Bayesian approach for parallel cultivations in robotic platforms |
| title_sort |
Automated regression of bioreactor models using a Bayesian approach for parallel cultivations in robotic platforms |
| dc.creator.none.fl_str_mv |
Luna, Martín Francisco Mione, Federico Martin Kaspersetz, Lucas Neubauer, Peter Martínez, Ernesto Carlos Cruz Bournazou, M. Nicolas |
| author |
Luna, Martín Francisco |
| author_facet |
Luna, Martín Francisco Mione, Federico Martin Kaspersetz, Lucas Neubauer, Peter Martínez, Ernesto Carlos Cruz Bournazou, M. Nicolas |
| author_role |
author |
| author2 |
Mione, Federico Martin Kaspersetz, Lucas Neubauer, Peter Martínez, Ernesto Carlos Cruz Bournazou, M. Nicolas |
| author2_role |
author author author author author |
| dc.subject.none.fl_str_mv |
Variational Bayesian inference Bioprocess modelling Robotic platform Laboratory Automation |
| topic |
Variational Bayesian inference Bioprocess modelling Robotic platform Laboratory Automation |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.9 https://purl.org/becyt/ford/2 |
| dc.description.none.fl_txt_mv |
Mathematical models of bioreactors are powerful tools that aid in the analysis and prediction of process operation. However, the complex behavior of microorganisms makes modelling of biological processes a particularly challenging task, especially in the early developmental stages when data and knowledge are scarce. As a result, bioreactor models may perform poorly due to structural errors or high uncertainty in their parameterization. Here, we present a method for automated dynamic model regression based on a Bayesian approach that can be applied in the operation of laboratory robotic platforms to perform both parameter estimation and state predictions for a given experimental design. Starting with wide distributions over parameters (prior knowledge), the model is updated as new data is generated and is then used to predict the evolution of the experiment. The proposed method is tested with data from several parallel cultivations from a 24 mini-bioreactors platform containing an Escherichia coli strain operating in fed-batch mode. The results highlight both the versatility of the approach to estimate parameter distribution as well as to predict the state evolution. Fil: Luna, Martín Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Mione, Federico Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Kaspersetz, Lucas. Technishe Universitat Berlin; Alemania Fil: Neubauer, Peter. Technishe Universitat Berlin; Alemania Fil: Martínez, Ernesto Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo y Diseño. Universidad Tecnológica Nacional. Facultad Regional Santa Fe. Instituto de Desarrollo y Diseño; Argentina Fil: Cruz Bournazou, M. Nicolas. Technishe Universitat Berlin; Alemania |
| description |
Mathematical models of bioreactors are powerful tools that aid in the analysis and prediction of process operation. However, the complex behavior of microorganisms makes modelling of biological processes a particularly challenging task, especially in the early developmental stages when data and knowledge are scarce. As a result, bioreactor models may perform poorly due to structural errors or high uncertainty in their parameterization. Here, we present a method for automated dynamic model regression based on a Bayesian approach that can be applied in the operation of laboratory robotic platforms to perform both parameter estimation and state predictions for a given experimental design. Starting with wide distributions over parameters (prior knowledge), the model is updated as new data is generated and is then used to predict the evolution of the experiment. The proposed method is tested with data from several parallel cultivations from a 24 mini-bioreactors platform containing an Escherichia coli strain operating in fed-batch mode. The results highlight both the versatility of the approach to estimate parameter distribution as well as to predict the state evolution. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/273516 Luna, Martín Francisco; Mione, Federico Martin; Kaspersetz, Lucas; Neubauer, Peter; Martínez, Ernesto Carlos; et al.; Automated regression of bioreactor models using a Bayesian approach for parallel cultivations in robotic platforms; Elsevier Science SA; Biochemical Engineering Journal; 219; 3-2025; 1-14 1369-703X CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/273516 |
| identifier_str_mv |
Luna, Martín Francisco; Mione, Federico Martin; Kaspersetz, Lucas; Neubauer, Peter; Martínez, Ernesto Carlos; et al.; Automated regression of bioreactor models using a Bayesian approach for parallel cultivations in robotic platforms; Elsevier Science SA; Biochemical Engineering Journal; 219; 3-2025; 1-14 1369-703X CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S1369703X25001032 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.bej.2025.109729 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Elsevier Science SA |
| publisher.none.fl_str_mv |
Elsevier Science SA |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847977051982659584 |
| score |
13.084122 |