Review of bayesian analysis in additive hazards model
- Autores
- Alvarez, Enrique Ernesto; Riddick, Maximiliano Luis
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In Survival Analysis, the focus of interest is a time $T^*$ until the occurrence of some event. A set of explanatory variables (denoted by a vector $Z$) is considered to analyze if there is a relationship between any of them and $T^*$. Accordingly, the ``hazard function´´ is defined: [ lambda(t,z) := lim_{Delta downarrow 0} rac{P[Tleq t+ Delta ert T >t,Z=z]}{Delta} .] Several models are defined based on this, as is the case of the additive model (among others). Bayesian techniques allow to incorporate previous knowledge or presumption information about the parameters into the model. This area grows extensively since the computationally techniques increase, giving rise to powerful Markov Chain Monte Carlo (MCMC) methods, which allow to generate random samples from the desired distributions. The purpose of this article is to offer a summary of the research developed in Bayesian techniques to approach the additive hazard models.
Fil: Alvarez, Enrique Ernesto. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Fisicomatemática; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Riddick, Maximiliano Luis. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina - Materia
-
SURVIVAL ANALYSIS
BAYESIAN INFERENCE
ADDITIVE HAZARDS MODEL - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/128507
Ver los metadatos del registro completo
id |
CONICETDig_6959fa0783e054c3b8c1376f2c5ec681 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/128507 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Review of bayesian analysis in additive hazards modelAlvarez, Enrique ErnestoRiddick, Maximiliano LuisSURVIVAL ANALYSISBAYESIAN INFERENCEADDITIVE HAZARDS MODELhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In Survival Analysis, the focus of interest is a time $T^*$ until the occurrence of some event. A set of explanatory variables (denoted by a vector $Z$) is considered to analyze if there is a relationship between any of them and $T^*$. Accordingly, the ``hazard function´´ is defined: [ lambda(t,z) := lim_{Delta downarrow 0} rac{P[Tleq t+ Delta ert T >t,Z=z]}{Delta} .] Several models are defined based on this, as is the case of the additive model (among others). Bayesian techniques allow to incorporate previous knowledge or presumption information about the parameters into the model. This area grows extensively since the computationally techniques increase, giving rise to powerful Markov Chain Monte Carlo (MCMC) methods, which allow to generate random samples from the desired distributions. The purpose of this article is to offer a summary of the research developed in Bayesian techniques to approach the additive hazard models.Fil: Alvarez, Enrique Ernesto. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Fisicomatemática; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Riddick, Maximiliano Luis. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaAsian Journal of Probability and Statistics2019-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/128507Alvarez, Enrique Ernesto; Riddick, Maximiliano Luis; Review of bayesian analysis in additive hazards model; Asian Journal of Probability and Statistics; Asian Journal of Probability and Statistics; 4; 2; 7-2019; 1-142582-0230CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://journalajpas.com/index.php/AJPAS/article/view/30112info:eu-repo/semantics/altIdentifier/doi/10.9734/ajpas/2019/v4i230112info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:40:58Zoai:ri.conicet.gov.ar:11336/128507instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:40:58.542CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Review of bayesian analysis in additive hazards model |
title |
Review of bayesian analysis in additive hazards model |
spellingShingle |
Review of bayesian analysis in additive hazards model Alvarez, Enrique Ernesto SURVIVAL ANALYSIS BAYESIAN INFERENCE ADDITIVE HAZARDS MODEL |
title_short |
Review of bayesian analysis in additive hazards model |
title_full |
Review of bayesian analysis in additive hazards model |
title_fullStr |
Review of bayesian analysis in additive hazards model |
title_full_unstemmed |
Review of bayesian analysis in additive hazards model |
title_sort |
Review of bayesian analysis in additive hazards model |
dc.creator.none.fl_str_mv |
Alvarez, Enrique Ernesto Riddick, Maximiliano Luis |
author |
Alvarez, Enrique Ernesto |
author_facet |
Alvarez, Enrique Ernesto Riddick, Maximiliano Luis |
author_role |
author |
author2 |
Riddick, Maximiliano Luis |
author2_role |
author |
dc.subject.none.fl_str_mv |
SURVIVAL ANALYSIS BAYESIAN INFERENCE ADDITIVE HAZARDS MODEL |
topic |
SURVIVAL ANALYSIS BAYESIAN INFERENCE ADDITIVE HAZARDS MODEL |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In Survival Analysis, the focus of interest is a time $T^*$ until the occurrence of some event. A set of explanatory variables (denoted by a vector $Z$) is considered to analyze if there is a relationship between any of them and $T^*$. Accordingly, the ``hazard function´´ is defined: [ lambda(t,z) := lim_{Delta downarrow 0} rac{P[Tleq t+ Delta ert T >t,Z=z]}{Delta} .] Several models are defined based on this, as is the case of the additive model (among others). Bayesian techniques allow to incorporate previous knowledge or presumption information about the parameters into the model. This area grows extensively since the computationally techniques increase, giving rise to powerful Markov Chain Monte Carlo (MCMC) methods, which allow to generate random samples from the desired distributions. The purpose of this article is to offer a summary of the research developed in Bayesian techniques to approach the additive hazard models. Fil: Alvarez, Enrique Ernesto. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Fisicomatemática; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina Fil: Riddick, Maximiliano Luis. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina |
description |
In Survival Analysis, the focus of interest is a time $T^*$ until the occurrence of some event. A set of explanatory variables (denoted by a vector $Z$) is considered to analyze if there is a relationship between any of them and $T^*$. Accordingly, the ``hazard function´´ is defined: [ lambda(t,z) := lim_{Delta downarrow 0} rac{P[Tleq t+ Delta ert T >t,Z=z]}{Delta} .] Several models are defined based on this, as is the case of the additive model (among others). Bayesian techniques allow to incorporate previous knowledge or presumption information about the parameters into the model. This area grows extensively since the computationally techniques increase, giving rise to powerful Markov Chain Monte Carlo (MCMC) methods, which allow to generate random samples from the desired distributions. The purpose of this article is to offer a summary of the research developed in Bayesian techniques to approach the additive hazard models. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/128507 Alvarez, Enrique Ernesto; Riddick, Maximiliano Luis; Review of bayesian analysis in additive hazards model; Asian Journal of Probability and Statistics; Asian Journal of Probability and Statistics; 4; 2; 7-2019; 1-14 2582-0230 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/128507 |
identifier_str_mv |
Alvarez, Enrique Ernesto; Riddick, Maximiliano Luis; Review of bayesian analysis in additive hazards model; Asian Journal of Probability and Statistics; Asian Journal of Probability and Statistics; 4; 2; 7-2019; 1-14 2582-0230 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journalajpas.com/index.php/AJPAS/article/view/30112 info:eu-repo/semantics/altIdentifier/doi/10.9734/ajpas/2019/v4i230112 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Asian Journal of Probability and Statistics |
publisher.none.fl_str_mv |
Asian Journal of Probability and Statistics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843605846255206400 |
score |
13.000565 |