Review of bayesian analysis in additive hazards model

Autores
Alvarez, Enrique Ernesto; Riddick, Maximiliano Luis
Año de publicación
2019
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In Survival Analysis, the focus of interest is a time $T^*$ until the occurrence of some event. A set of explanatory variables (denoted by a vector $Z$) is considered to analyze if there is a relationship between any of them and $T^*$. Accordingly, the ``hazard function´´ is defined: [ lambda(t,z) := lim_{Delta downarrow 0} rac{P[Tleq t+ Delta ert T >t,Z=z]}{Delta} .] Several models are defined based on this, as is the case of the additive model (among others). Bayesian techniques allow to incorporate previous knowledge or presumption information about the parameters into the model. This area grows extensively since the computationally techniques increase, giving rise to powerful Markov Chain Monte Carlo (MCMC) methods, which allow to generate random samples from the desired distributions. The purpose of this article is to offer a summary of the research developed in Bayesian techniques to approach the additive hazard models.
Fil: Alvarez, Enrique Ernesto. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Fisicomatemática; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Riddick, Maximiliano Luis. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Materia
SURVIVAL ANALYSIS
BAYESIAN INFERENCE
ADDITIVE HAZARDS MODEL
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/128507

id CONICETDig_6959fa0783e054c3b8c1376f2c5ec681
oai_identifier_str oai:ri.conicet.gov.ar:11336/128507
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Review of bayesian analysis in additive hazards modelAlvarez, Enrique ErnestoRiddick, Maximiliano LuisSURVIVAL ANALYSISBAYESIAN INFERENCEADDITIVE HAZARDS MODELhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In Survival Analysis, the focus of interest is a time $T^*$ until the occurrence of some event. A set of explanatory variables (denoted by a vector $Z$) is considered to analyze if there is a relationship between any of them and $T^*$. Accordingly, the ``hazard function´´ is defined: [ lambda(t,z) := lim_{Delta downarrow 0} rac{P[Tleq t+ Delta ert T >t,Z=z]}{Delta} .] Several models are defined based on this, as is the case of the additive model (among others). Bayesian techniques allow to incorporate previous knowledge or presumption information about the parameters into the model. This area grows extensively since the computationally techniques increase, giving rise to powerful Markov Chain Monte Carlo (MCMC) methods, which allow to generate random samples from the desired distributions. The purpose of this article is to offer a summary of the research developed in Bayesian techniques to approach the additive hazard models.Fil: Alvarez, Enrique Ernesto. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Fisicomatemática; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Riddick, Maximiliano Luis. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaAsian Journal of Probability and Statistics2019-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/128507Alvarez, Enrique Ernesto; Riddick, Maximiliano Luis; Review of bayesian analysis in additive hazards model; Asian Journal of Probability and Statistics; Asian Journal of Probability and Statistics; 4; 2; 7-2019; 1-142582-0230CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://journalajpas.com/index.php/AJPAS/article/view/30112info:eu-repo/semantics/altIdentifier/doi/10.9734/ajpas/2019/v4i230112info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:40:58Zoai:ri.conicet.gov.ar:11336/128507instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:40:58.542CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Review of bayesian analysis in additive hazards model
title Review of bayesian analysis in additive hazards model
spellingShingle Review of bayesian analysis in additive hazards model
Alvarez, Enrique Ernesto
SURVIVAL ANALYSIS
BAYESIAN INFERENCE
ADDITIVE HAZARDS MODEL
title_short Review of bayesian analysis in additive hazards model
title_full Review of bayesian analysis in additive hazards model
title_fullStr Review of bayesian analysis in additive hazards model
title_full_unstemmed Review of bayesian analysis in additive hazards model
title_sort Review of bayesian analysis in additive hazards model
dc.creator.none.fl_str_mv Alvarez, Enrique Ernesto
Riddick, Maximiliano Luis
author Alvarez, Enrique Ernesto
author_facet Alvarez, Enrique Ernesto
Riddick, Maximiliano Luis
author_role author
author2 Riddick, Maximiliano Luis
author2_role author
dc.subject.none.fl_str_mv SURVIVAL ANALYSIS
BAYESIAN INFERENCE
ADDITIVE HAZARDS MODEL
topic SURVIVAL ANALYSIS
BAYESIAN INFERENCE
ADDITIVE HAZARDS MODEL
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In Survival Analysis, the focus of interest is a time $T^*$ until the occurrence of some event. A set of explanatory variables (denoted by a vector $Z$) is considered to analyze if there is a relationship between any of them and $T^*$. Accordingly, the ``hazard function´´ is defined: [ lambda(t,z) := lim_{Delta downarrow 0} rac{P[Tleq t+ Delta ert T >t,Z=z]}{Delta} .] Several models are defined based on this, as is the case of the additive model (among others). Bayesian techniques allow to incorporate previous knowledge or presumption information about the parameters into the model. This area grows extensively since the computationally techniques increase, giving rise to powerful Markov Chain Monte Carlo (MCMC) methods, which allow to generate random samples from the desired distributions. The purpose of this article is to offer a summary of the research developed in Bayesian techniques to approach the additive hazard models.
Fil: Alvarez, Enrique Ernesto. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Fisicomatemática; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
Fil: Riddick, Maximiliano Luis. Universidad Nacional de la Plata. Facultad de Cs.exactas. Centro de Matematica de la Plata.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina
description In Survival Analysis, the focus of interest is a time $T^*$ until the occurrence of some event. A set of explanatory variables (denoted by a vector $Z$) is considered to analyze if there is a relationship between any of them and $T^*$. Accordingly, the ``hazard function´´ is defined: [ lambda(t,z) := lim_{Delta downarrow 0} rac{P[Tleq t+ Delta ert T >t,Z=z]}{Delta} .] Several models are defined based on this, as is the case of the additive model (among others). Bayesian techniques allow to incorporate previous knowledge or presumption information about the parameters into the model. This area grows extensively since the computationally techniques increase, giving rise to powerful Markov Chain Monte Carlo (MCMC) methods, which allow to generate random samples from the desired distributions. The purpose of this article is to offer a summary of the research developed in Bayesian techniques to approach the additive hazard models.
publishDate 2019
dc.date.none.fl_str_mv 2019-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/128507
Alvarez, Enrique Ernesto; Riddick, Maximiliano Luis; Review of bayesian analysis in additive hazards model; Asian Journal of Probability and Statistics; Asian Journal of Probability and Statistics; 4; 2; 7-2019; 1-14
2582-0230
CONICET Digital
CONICET
url http://hdl.handle.net/11336/128507
identifier_str_mv Alvarez, Enrique Ernesto; Riddick, Maximiliano Luis; Review of bayesian analysis in additive hazards model; Asian Journal of Probability and Statistics; Asian Journal of Probability and Statistics; 4; 2; 7-2019; 1-14
2582-0230
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://journalajpas.com/index.php/AJPAS/article/view/30112
info:eu-repo/semantics/altIdentifier/doi/10.9734/ajpas/2019/v4i230112
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Asian Journal of Probability and Statistics
publisher.none.fl_str_mv Asian Journal of Probability and Statistics
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843605846255206400
score 13.000565