Finding initial costates in finite-horizon nonlinear-quadratic optimal control problems

Autores
Costanza, Vicente
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A procedure for obtaining the initial value of the costate in a regular, finite-horizon, nonlinear-quadratic problem is devised in dimension one. The optimal control can then be constructed from the solution to the Hamiltonian equations, integrated on-line. The initial costate is found by successively solving two first-order, quasi-linear, partial differential equations (PDEs), whose independent variables are the time-horizon duration T and the final-penalty coefficient S. These PDEs need to be integrated off-line, the solution rendering not only the initial condition for the costate sought in the particular (T, S)-situation but also additional information on the boundary values of the whole two-parameter family of control problems, that can be used for design purposes. Results are tested against exact solutions of the PDEs for linear systems and also compared with numerical solutions of the bilinear-quadratic problem obtained through a power-series' expansion approach. Bilinear systems are specially treated in their character of universal approximations of nonlinear systems with bounded controls during finite time-periods.
Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Materia
Optimal Control
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18587

id CONICETDig_4378fb03bfce2cf6779828d275b08f45
oai_identifier_str oai:ri.conicet.gov.ar:11336/18587
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Finding initial costates in finite-horizon nonlinear-quadratic optimal control problemsCostanza, VicenteOptimal Controlhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2A procedure for obtaining the initial value of the costate in a regular, finite-horizon, nonlinear-quadratic problem is devised in dimension one. The optimal control can then be constructed from the solution to the Hamiltonian equations, integrated on-line. The initial costate is found by successively solving two first-order, quasi-linear, partial differential equations (PDEs), whose independent variables are the time-horizon duration T and the final-penalty coefficient S. These PDEs need to be integrated off-line, the solution rendering not only the initial condition for the costate sought in the particular (T, S)-situation but also additional information on the boundary values of the whole two-parameter family of control problems, that can be used for design purposes. Results are tested against exact solutions of the PDEs for linear systems and also compared with numerical solutions of the bilinear-quadratic problem obtained through a power-series' expansion approach. Bilinear systems are specially treated in their character of universal approximations of nonlinear systems with bounded controls during finite time-periods.Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaWiley2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18587Costanza, Vicente; Finding initial costates in finite-horizon nonlinear-quadratic optimal control problems; Wiley; Optimal Control Applications & Methods; 29; 3; 12-2008; 225-2420143-2087enginfo:eu-repo/semantics/altIdentifier/doi/10.1002/oca.824info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/oca.824/abstractinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:20:43Zoai:ri.conicet.gov.ar:11336/18587instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:20:43.449CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Finding initial costates in finite-horizon nonlinear-quadratic optimal control problems
title Finding initial costates in finite-horizon nonlinear-quadratic optimal control problems
spellingShingle Finding initial costates in finite-horizon nonlinear-quadratic optimal control problems
Costanza, Vicente
Optimal Control
title_short Finding initial costates in finite-horizon nonlinear-quadratic optimal control problems
title_full Finding initial costates in finite-horizon nonlinear-quadratic optimal control problems
title_fullStr Finding initial costates in finite-horizon nonlinear-quadratic optimal control problems
title_full_unstemmed Finding initial costates in finite-horizon nonlinear-quadratic optimal control problems
title_sort Finding initial costates in finite-horizon nonlinear-quadratic optimal control problems
dc.creator.none.fl_str_mv Costanza, Vicente
author Costanza, Vicente
author_facet Costanza, Vicente
author_role author
dc.subject.none.fl_str_mv Optimal Control
topic Optimal Control
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv A procedure for obtaining the initial value of the costate in a regular, finite-horizon, nonlinear-quadratic problem is devised in dimension one. The optimal control can then be constructed from the solution to the Hamiltonian equations, integrated on-line. The initial costate is found by successively solving two first-order, quasi-linear, partial differential equations (PDEs), whose independent variables are the time-horizon duration T and the final-penalty coefficient S. These PDEs need to be integrated off-line, the solution rendering not only the initial condition for the costate sought in the particular (T, S)-situation but also additional information on the boundary values of the whole two-parameter family of control problems, that can be used for design purposes. Results are tested against exact solutions of the PDEs for linear systems and also compared with numerical solutions of the bilinear-quadratic problem obtained through a power-series' expansion approach. Bilinear systems are specially treated in their character of universal approximations of nonlinear systems with bounded controls during finite time-periods.
Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
description A procedure for obtaining the initial value of the costate in a regular, finite-horizon, nonlinear-quadratic problem is devised in dimension one. The optimal control can then be constructed from the solution to the Hamiltonian equations, integrated on-line. The initial costate is found by successively solving two first-order, quasi-linear, partial differential equations (PDEs), whose independent variables are the time-horizon duration T and the final-penalty coefficient S. These PDEs need to be integrated off-line, the solution rendering not only the initial condition for the costate sought in the particular (T, S)-situation but also additional information on the boundary values of the whole two-parameter family of control problems, that can be used for design purposes. Results are tested against exact solutions of the PDEs for linear systems and also compared with numerical solutions of the bilinear-quadratic problem obtained through a power-series' expansion approach. Bilinear systems are specially treated in their character of universal approximations of nonlinear systems with bounded controls during finite time-periods.
publishDate 2008
dc.date.none.fl_str_mv 2008-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18587
Costanza, Vicente; Finding initial costates in finite-horizon nonlinear-quadratic optimal control problems; Wiley; Optimal Control Applications & Methods; 29; 3; 12-2008; 225-242
0143-2087
url http://hdl.handle.net/11336/18587
identifier_str_mv Costanza, Vicente; Finding initial costates in finite-horizon nonlinear-quadratic optimal control problems; Wiley; Optimal Control Applications & Methods; 29; 3; 12-2008; 225-242
0143-2087
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1002/oca.824
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/oca.824/abstract
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Wiley
publisher.none.fl_str_mv Wiley
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082586676297728
score 13.22299