On-line costate integration for nonlinear control

Autores
Costanza, Vicente; Neuman, C.
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The optimal feedback control of nonlinear chemical processes, specially for regulation and set-point changing, is attacked in this paper. A novel procedure based on the Hamiltonian equations associated to a bilinear approximation of the dynamics and a quadratic cost is presented. The usual boundary-value situation for the coupled state-costate system is transformed into an initial-value problem through the solution of a generalized algebraic Riccati equation. This allows to integrate the Hamiltonian equations on-line, and to construct the feedback law by using the costate solution trajectory. Results are shown applied to a classical nonlinear chemical reactor model, and compared against standard MPC and previous versions of bilinear-quadratic strategies based on power series expansions.
Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Neuman, C.. Universidad Nacional del Litoral; Argentina
Materia
Optimal Control
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/20885

id CONICETDig_9d4c81892f303b6a6a09b87b5ea1daf3
oai_identifier_str oai:ri.conicet.gov.ar:11336/20885
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling On-line costate integration for nonlinear controlCostanza, VicenteNeuman, C.Optimal Controlhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The optimal feedback control of nonlinear chemical processes, specially for regulation and set-point changing, is attacked in this paper. A novel procedure based on the Hamiltonian equations associated to a bilinear approximation of the dynamics and a quadratic cost is presented. The usual boundary-value situation for the coupled state-costate system is transformed into an initial-value problem through the solution of a generalized algebraic Riccati equation. This allows to integrate the Hamiltonian equations on-line, and to construct the feedback law by using the costate solution trajectory. Results are shown applied to a classical nonlinear chemical reactor model, and compared against standard MPC and previous versions of bilinear-quadratic strategies based on power series expansions.Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Neuman, C.. Universidad Nacional del Litoral; ArgentinaPlanta Piloto de Ingeniería Química2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20885Costanza, Vicente; Neuman, C.; On-line costate integration for nonlinear control; Planta Piloto de Ingeniería Química; Latin American Applied Research; 36; 2; 12-2006; 129-1360327-07931851-8796CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.laar.uns.edu.ar/indexes/artic_v3602/vol36_2_pp129.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:55Zoai:ri.conicet.gov.ar:11336/20885instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:55.613CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv On-line costate integration for nonlinear control
title On-line costate integration for nonlinear control
spellingShingle On-line costate integration for nonlinear control
Costanza, Vicente
Optimal Control
title_short On-line costate integration for nonlinear control
title_full On-line costate integration for nonlinear control
title_fullStr On-line costate integration for nonlinear control
title_full_unstemmed On-line costate integration for nonlinear control
title_sort On-line costate integration for nonlinear control
dc.creator.none.fl_str_mv Costanza, Vicente
Neuman, C.
author Costanza, Vicente
author_facet Costanza, Vicente
Neuman, C.
author_role author
author2 Neuman, C.
author2_role author
dc.subject.none.fl_str_mv Optimal Control
topic Optimal Control
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv The optimal feedback control of nonlinear chemical processes, specially for regulation and set-point changing, is attacked in this paper. A novel procedure based on the Hamiltonian equations associated to a bilinear approximation of the dynamics and a quadratic cost is presented. The usual boundary-value situation for the coupled state-costate system is transformed into an initial-value problem through the solution of a generalized algebraic Riccati equation. This allows to integrate the Hamiltonian equations on-line, and to construct the feedback law by using the costate solution trajectory. Results are shown applied to a classical nonlinear chemical reactor model, and compared against standard MPC and previous versions of bilinear-quadratic strategies based on power series expansions.
Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Neuman, C.. Universidad Nacional del Litoral; Argentina
description The optimal feedback control of nonlinear chemical processes, specially for regulation and set-point changing, is attacked in this paper. A novel procedure based on the Hamiltonian equations associated to a bilinear approximation of the dynamics and a quadratic cost is presented. The usual boundary-value situation for the coupled state-costate system is transformed into an initial-value problem through the solution of a generalized algebraic Riccati equation. This allows to integrate the Hamiltonian equations on-line, and to construct the feedback law by using the costate solution trajectory. Results are shown applied to a classical nonlinear chemical reactor model, and compared against standard MPC and previous versions of bilinear-quadratic strategies based on power series expansions.
publishDate 2006
dc.date.none.fl_str_mv 2006-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/20885
Costanza, Vicente; Neuman, C.; On-line costate integration for nonlinear control; Planta Piloto de Ingeniería Química; Latin American Applied Research; 36; 2; 12-2006; 129-136
0327-0793
1851-8796
CONICET Digital
CONICET
url http://hdl.handle.net/11336/20885
identifier_str_mv Costanza, Vicente; Neuman, C.; On-line costate integration for nonlinear control; Planta Piloto de Ingeniería Química; Latin American Applied Research; 36; 2; 12-2006; 129-136
0327-0793
1851-8796
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.laar.uns.edu.ar/indexes/artic_v3602/vol36_2_pp129.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Planta Piloto de Ingeniería Química
publisher.none.fl_str_mv Planta Piloto de Ingeniería Química
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268697348014080
score 12.885934