On-line costate integration for nonlinear control
- Autores
- Costanza, Vicente; Neuman, C.
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The optimal feedback control of nonlinear chemical processes, specially for regulation and set-point changing, is attacked in this paper. A novel procedure based on the Hamiltonian equations associated to a bilinear approximation of the dynamics and a quadratic cost is presented. The usual boundary-value situation for the coupled state-costate system is transformed into an initial-value problem through the solution of a generalized algebraic Riccati equation. This allows to integrate the Hamiltonian equations on-line, and to construct the feedback law by using the costate solution trajectory. Results are shown applied to a classical nonlinear chemical reactor model, and compared against standard MPC and previous versions of bilinear-quadratic strategies based on power series expansions.
Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Neuman, C.. Universidad Nacional del Litoral; Argentina - Materia
- Optimal Control
- Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/20885
Ver los metadatos del registro completo
id |
CONICETDig_9d4c81892f303b6a6a09b87b5ea1daf3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/20885 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On-line costate integration for nonlinear controlCostanza, VicenteNeuman, C.Optimal Controlhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2The optimal feedback control of nonlinear chemical processes, specially for regulation and set-point changing, is attacked in this paper. A novel procedure based on the Hamiltonian equations associated to a bilinear approximation of the dynamics and a quadratic cost is presented. The usual boundary-value situation for the coupled state-costate system is transformed into an initial-value problem through the solution of a generalized algebraic Riccati equation. This allows to integrate the Hamiltonian equations on-line, and to construct the feedback law by using the costate solution trajectory. Results are shown applied to a classical nonlinear chemical reactor model, and compared against standard MPC and previous versions of bilinear-quadratic strategies based on power series expansions.Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Neuman, C.. Universidad Nacional del Litoral; ArgentinaPlanta Piloto de Ingeniería Química2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20885Costanza, Vicente; Neuman, C.; On-line costate integration for nonlinear control; Planta Piloto de Ingeniería Química; Latin American Applied Research; 36; 2; 12-2006; 129-1360327-07931851-8796CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.laar.uns.edu.ar/indexes/artic_v3602/vol36_2_pp129.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:44:55Zoai:ri.conicet.gov.ar:11336/20885instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:44:55.613CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On-line costate integration for nonlinear control |
title |
On-line costate integration for nonlinear control |
spellingShingle |
On-line costate integration for nonlinear control Costanza, Vicente Optimal Control |
title_short |
On-line costate integration for nonlinear control |
title_full |
On-line costate integration for nonlinear control |
title_fullStr |
On-line costate integration for nonlinear control |
title_full_unstemmed |
On-line costate integration for nonlinear control |
title_sort |
On-line costate integration for nonlinear control |
dc.creator.none.fl_str_mv |
Costanza, Vicente Neuman, C. |
author |
Costanza, Vicente |
author_facet |
Costanza, Vicente Neuman, C. |
author_role |
author |
author2 |
Neuman, C. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Optimal Control |
topic |
Optimal Control |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The optimal feedback control of nonlinear chemical processes, specially for regulation and set-point changing, is attacked in this paper. A novel procedure based on the Hamiltonian equations associated to a bilinear approximation of the dynamics and a quadratic cost is presented. The usual boundary-value situation for the coupled state-costate system is transformed into an initial-value problem through the solution of a generalized algebraic Riccati equation. This allows to integrate the Hamiltonian equations on-line, and to construct the feedback law by using the costate solution trajectory. Results are shown applied to a classical nonlinear chemical reactor model, and compared against standard MPC and previous versions of bilinear-quadratic strategies based on power series expansions. Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Neuman, C.. Universidad Nacional del Litoral; Argentina |
description |
The optimal feedback control of nonlinear chemical processes, specially for regulation and set-point changing, is attacked in this paper. A novel procedure based on the Hamiltonian equations associated to a bilinear approximation of the dynamics and a quadratic cost is presented. The usual boundary-value situation for the coupled state-costate system is transformed into an initial-value problem through the solution of a generalized algebraic Riccati equation. This allows to integrate the Hamiltonian equations on-line, and to construct the feedback law by using the costate solution trajectory. Results are shown applied to a classical nonlinear chemical reactor model, and compared against standard MPC and previous versions of bilinear-quadratic strategies based on power series expansions. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/20885 Costanza, Vicente; Neuman, C.; On-line costate integration for nonlinear control; Planta Piloto de Ingeniería Química; Latin American Applied Research; 36; 2; 12-2006; 129-136 0327-0793 1851-8796 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/20885 |
identifier_str_mv |
Costanza, Vicente; Neuman, C.; On-line costate integration for nonlinear control; Planta Piloto de Ingeniería Química; Latin American Applied Research; 36; 2; 12-2006; 129-136 0327-0793 1851-8796 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.laar.uns.edu.ar/indexes/artic_v3602/vol36_2_pp129.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Planta Piloto de Ingeniería Química |
publisher.none.fl_str_mv |
Planta Piloto de Ingeniería Química |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268697348014080 |
score |
12.885934 |