Regular Optimal Control Problems with Quadratic Final Penalties
- Autores
- Costanza, Vicente
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Hamilton’s canonical equations (HCEs) have played a central role in Mechanicsafter (i) their equivalence with the principle of least action, and (ii) the variationalcalculus leading to the Euler-Lagrange equation, were established and applied (see[1]). Also, since the foundational work of Pontryagin [22], HCEs have been atthe core of modern optimal control theory. When the problem concerning ann-dimensional control system and an additive cost objective is regular [19], i.e.when the Hamiltonian H(t, x, lambda, u) of the problem is smooth enough and can beuniquely optimized with respect to u at a control value u0(t, x, lambda) (depending onthe remaining variables), then HCEs appear as a set of 2n ordinary differentialequations whose solutions are optimal state-costate time trajectories.
Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; Argentina - Materia
-
Optimal Control
Nonlinear Systems
Boundary Problems - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18581
Ver los metadatos del registro completo
id |
CONICETDig_2e10406eb98e7de23569381d2b59ab26 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18581 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Regular Optimal Control Problems with Quadratic Final PenaltiesCostanza, VicenteOptimal ControlNonlinear SystemsBoundary Problemshttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Hamilton’s canonical equations (HCEs) have played a central role in Mechanicsafter (i) their equivalence with the principle of least action, and (ii) the variationalcalculus leading to the Euler-Lagrange equation, were established and applied (see[1]). Also, since the foundational work of Pontryagin [22], HCEs have been atthe core of modern optimal control theory. When the problem concerning ann-dimensional control system and an additive cost objective is regular [19], i.e.when the Hamiltonian H(t, x, lambda, u) of the problem is smooth enough and can beuniquely optimized with respect to u at a control value u0(t, x, lambda) (depending onthe remaining variables), then HCEs appear as a set of 2n ordinary differentialequations whose solutions are optimal state-costate time trajectories.Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; ArgentinaUnión Matemática Argentina2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18581Costanza, Vicente; Regular Optimal Control Problems with Quadratic Final Penalties; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 49; 1; 12-2008; 43-560041-69321669-9637enginfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v49n1/v49n1a05.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:23:19Zoai:ri.conicet.gov.ar:11336/18581instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:23:19.796CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Regular Optimal Control Problems with Quadratic Final Penalties |
title |
Regular Optimal Control Problems with Quadratic Final Penalties |
spellingShingle |
Regular Optimal Control Problems with Quadratic Final Penalties Costanza, Vicente Optimal Control Nonlinear Systems Boundary Problems |
title_short |
Regular Optimal Control Problems with Quadratic Final Penalties |
title_full |
Regular Optimal Control Problems with Quadratic Final Penalties |
title_fullStr |
Regular Optimal Control Problems with Quadratic Final Penalties |
title_full_unstemmed |
Regular Optimal Control Problems with Quadratic Final Penalties |
title_sort |
Regular Optimal Control Problems with Quadratic Final Penalties |
dc.creator.none.fl_str_mv |
Costanza, Vicente |
author |
Costanza, Vicente |
author_facet |
Costanza, Vicente |
author_role |
author |
dc.subject.none.fl_str_mv |
Optimal Control Nonlinear Systems Boundary Problems |
topic |
Optimal Control Nonlinear Systems Boundary Problems |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Hamilton’s canonical equations (HCEs) have played a central role in Mechanicsafter (i) their equivalence with the principle of least action, and (ii) the variationalcalculus leading to the Euler-Lagrange equation, were established and applied (see[1]). Also, since the foundational work of Pontryagin [22], HCEs have been atthe core of modern optimal control theory. When the problem concerning ann-dimensional control system and an additive cost objective is regular [19], i.e.when the Hamiltonian H(t, x, lambda, u) of the problem is smooth enough and can beuniquely optimized with respect to u at a control value u0(t, x, lambda) (depending onthe remaining variables), then HCEs appear as a set of 2n ordinary differentialequations whose solutions are optimal state-costate time trajectories. Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; Argentina |
description |
Hamilton’s canonical equations (HCEs) have played a central role in Mechanicsafter (i) their equivalence with the principle of least action, and (ii) the variationalcalculus leading to the Euler-Lagrange equation, were established and applied (see[1]). Also, since the foundational work of Pontryagin [22], HCEs have been atthe core of modern optimal control theory. When the problem concerning ann-dimensional control system and an additive cost objective is regular [19], i.e.when the Hamiltonian H(t, x, lambda, u) of the problem is smooth enough and can beuniquely optimized with respect to u at a control value u0(t, x, lambda) (depending onthe remaining variables), then HCEs appear as a set of 2n ordinary differentialequations whose solutions are optimal state-costate time trajectories. |
publishDate |
2008 |
dc.date.none.fl_str_mv |
2008-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18581 Costanza, Vicente; Regular Optimal Control Problems with Quadratic Final Penalties; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 49; 1; 12-2008; 43-56 0041-6932 1669-9637 |
url |
http://hdl.handle.net/11336/18581 |
identifier_str_mv |
Costanza, Vicente; Regular Optimal Control Problems with Quadratic Final Penalties; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 49; 1; 12-2008; 43-56 0041-6932 1669-9637 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v49n1/v49n1a05.pdf |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Unión Matemática Argentina |
publisher.none.fl_str_mv |
Unión Matemática Argentina |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082641496899584 |
score |
13.22299 |