Regular Optimal Control Problems with Quadratic Final Penalties

Autores
Costanza, Vicente
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Hamilton’s canonical equations (HCEs) have played a central role in Mechanicsafter (i) their equivalence with the principle of least action, and (ii) the variationalcalculus leading to the Euler-Lagrange equation, were established and applied (see[1]). Also, since the foundational work of Pontryagin [22], HCEs have been atthe core of modern optimal control theory. When the problem concerning ann-dimensional control system and an additive cost objective is regular [19], i.e.when the Hamiltonian H(t, x, lambda, u) of the problem is smooth enough and can beuniquely optimized with respect to u at a control value u0(t, x, lambda) (depending onthe remaining variables), then HCEs appear as a set of 2n ordinary differentialequations whose solutions are optimal state-costate time trajectories.
Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; Argentina
Materia
Optimal Control
Nonlinear Systems
Boundary Problems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/18581

id CONICETDig_2e10406eb98e7de23569381d2b59ab26
oai_identifier_str oai:ri.conicet.gov.ar:11336/18581
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Regular Optimal Control Problems with Quadratic Final PenaltiesCostanza, VicenteOptimal ControlNonlinear SystemsBoundary Problemshttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Hamilton’s canonical equations (HCEs) have played a central role in Mechanicsafter (i) their equivalence with the principle of least action, and (ii) the variationalcalculus leading to the Euler-Lagrange equation, were established and applied (see[1]). Also, since the foundational work of Pontryagin [22], HCEs have been atthe core of modern optimal control theory. When the problem concerning ann-dimensional control system and an additive cost objective is regular [19], i.e.when the Hamiltonian H(t, x, lambda, u) of the problem is smooth enough and can beuniquely optimized with respect to u at a control value u0(t, x, lambda) (depending onthe remaining variables), then HCEs appear as a set of 2n ordinary differentialequations whose solutions are optimal state-costate time trajectories.Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; ArgentinaUnión Matemática Argentina2008-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18581Costanza, Vicente; Regular Optimal Control Problems with Quadratic Final Penalties; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 49; 1; 12-2008; 43-560041-69321669-9637enginfo:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v49n1/v49n1a05.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:23:19Zoai:ri.conicet.gov.ar:11336/18581instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:23:19.796CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Regular Optimal Control Problems with Quadratic Final Penalties
title Regular Optimal Control Problems with Quadratic Final Penalties
spellingShingle Regular Optimal Control Problems with Quadratic Final Penalties
Costanza, Vicente
Optimal Control
Nonlinear Systems
Boundary Problems
title_short Regular Optimal Control Problems with Quadratic Final Penalties
title_full Regular Optimal Control Problems with Quadratic Final Penalties
title_fullStr Regular Optimal Control Problems with Quadratic Final Penalties
title_full_unstemmed Regular Optimal Control Problems with Quadratic Final Penalties
title_sort Regular Optimal Control Problems with Quadratic Final Penalties
dc.creator.none.fl_str_mv Costanza, Vicente
author Costanza, Vicente
author_facet Costanza, Vicente
author_role author
dc.subject.none.fl_str_mv Optimal Control
Nonlinear Systems
Boundary Problems
topic Optimal Control
Nonlinear Systems
Boundary Problems
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.4
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv Hamilton’s canonical equations (HCEs) have played a central role in Mechanicsafter (i) their equivalence with the principle of least action, and (ii) the variationalcalculus leading to the Euler-Lagrange equation, were established and applied (see[1]). Also, since the foundational work of Pontryagin [22], HCEs have been atthe core of modern optimal control theory. When the problem concerning ann-dimensional control system and an additive cost objective is regular [19], i.e.when the Hamiltonian H(t, x, lambda, u) of the problem is smooth enough and can beuniquely optimized with respect to u at a control value u0(t, x, lambda) (depending onthe remaining variables), then HCEs appear as a set of 2n ordinary differentialequations whose solutions are optimal state-costate time trajectories.
Fil: Costanza, Vicente. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico Para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico Para la Industria Química; Argentina
description Hamilton’s canonical equations (HCEs) have played a central role in Mechanicsafter (i) their equivalence with the principle of least action, and (ii) the variationalcalculus leading to the Euler-Lagrange equation, were established and applied (see[1]). Also, since the foundational work of Pontryagin [22], HCEs have been atthe core of modern optimal control theory. When the problem concerning ann-dimensional control system and an additive cost objective is regular [19], i.e.when the Hamiltonian H(t, x, lambda, u) of the problem is smooth enough and can beuniquely optimized with respect to u at a control value u0(t, x, lambda) (depending onthe remaining variables), then HCEs appear as a set of 2n ordinary differentialequations whose solutions are optimal state-costate time trajectories.
publishDate 2008
dc.date.none.fl_str_mv 2008-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/18581
Costanza, Vicente; Regular Optimal Control Problems with Quadratic Final Penalties; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 49; 1; 12-2008; 43-56
0041-6932
1669-9637
url http://hdl.handle.net/11336/18581
identifier_str_mv Costanza, Vicente; Regular Optimal Control Problems with Quadratic Final Penalties; Unión Matemática Argentina; Revista de la Unión Matemática Argentina; 49; 1; 12-2008; 43-56
0041-6932
1669-9637
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://inmabb.criba.edu.ar/revuma/pdf/v49n1/v49n1a05.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Unión Matemática Argentina
publisher.none.fl_str_mv Unión Matemática Argentina
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846082641496899584
score 13.22299