Convergence of the solution of the one-phase Stefan problem with respect two parameters

Autores
Briozzo, Adriana Clotilde; Tarzia, Domingo Alberto
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A one-phase unidimensional Stefan problem with a convective boundary condition at the fixed face x = 0, with a heat transfer coefficient h > 0 (proportional to the Biot number) and an initial position of the free boundary b = s(0) > 0 is considered. We study the limit of the temperature θ = θb,h and the free boundary s = sb,h when b → 0 + (for all h > 0) and we also obtain an order of convergence. Moreover, we study the limit of the temperature θb,h and the free boundary sb,h when (b, h) → (0+, 0 +).
Fil: Briozzo, Adriana Clotilde. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
Materia
Stefan problem
Free boundary problem
Phase-change process
Convective boundary condiction
2000 AMS Subject Classification: 35R35, 80A22, 35C55
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/53872

id CONICETDig_298d629d7e23731f8b51c7fa10ba680f
oai_identifier_str oai:ri.conicet.gov.ar:11336/53872
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Convergence of the solution of the one-phase Stefan problem with respect two parametersBriozzo, Adriana ClotildeTarzia, Domingo AlbertoStefan problemFree boundary problemPhase-change processConvective boundary condiction2000 AMS Subject Classification: 35R35, 80A22, 35C55https://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A one-phase unidimensional Stefan problem with a convective boundary condition at the fixed face x = 0, with a heat transfer coefficient h > 0 (proportional to the Biot number) and an initial position of the free boundary b = s(0) > 0 is considered. We study the limit of the temperature θ = θb,h and the free boundary s = sb,h when b → 0 + (for all h > 0) and we also obtain an order of convergence. Moreover, we study the limit of the temperature θb,h and the free boundary sb,h when (b, h) → (0+, 0 +).Fil: Briozzo, Adriana Clotilde. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaFil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; ArgentinaUniversidad Austral2015-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/53872Briozzo, Adriana Clotilde; Tarzia, Domingo Alberto; Convergence of the solution of the one-phase Stefan problem with respect two parameters; Universidad Austral; MAT - Serie A; 20; 7-2015; 31-381515-4904CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.austral.edu.ar/cienciasempresariales/wp-content/uploads/2016/04/TarziaEd-MAT-SerieA-202015.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:04:46Zoai:ri.conicet.gov.ar:11336/53872instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:04:46.327CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Convergence of the solution of the one-phase Stefan problem with respect two parameters
title Convergence of the solution of the one-phase Stefan problem with respect two parameters
spellingShingle Convergence of the solution of the one-phase Stefan problem with respect two parameters
Briozzo, Adriana Clotilde
Stefan problem
Free boundary problem
Phase-change process
Convective boundary condiction
2000 AMS Subject Classification: 35R35, 80A22, 35C55
title_short Convergence of the solution of the one-phase Stefan problem with respect two parameters
title_full Convergence of the solution of the one-phase Stefan problem with respect two parameters
title_fullStr Convergence of the solution of the one-phase Stefan problem with respect two parameters
title_full_unstemmed Convergence of the solution of the one-phase Stefan problem with respect two parameters
title_sort Convergence of the solution of the one-phase Stefan problem with respect two parameters
dc.creator.none.fl_str_mv Briozzo, Adriana Clotilde
Tarzia, Domingo Alberto
author Briozzo, Adriana Clotilde
author_facet Briozzo, Adriana Clotilde
Tarzia, Domingo Alberto
author_role author
author2 Tarzia, Domingo Alberto
author2_role author
dc.subject.none.fl_str_mv Stefan problem
Free boundary problem
Phase-change process
Convective boundary condiction
2000 AMS Subject Classification: 35R35, 80A22, 35C55
topic Stefan problem
Free boundary problem
Phase-change process
Convective boundary condiction
2000 AMS Subject Classification: 35R35, 80A22, 35C55
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A one-phase unidimensional Stefan problem with a convective boundary condition at the fixed face x = 0, with a heat transfer coefficient h > 0 (proportional to the Biot number) and an initial position of the free boundary b = s(0) > 0 is considered. We study the limit of the temperature θ = θb,h and the free boundary s = sb,h when b → 0 + (for all h > 0) and we also obtain an order of convergence. Moreover, we study the limit of the temperature θb,h and the free boundary sb,h when (b, h) → (0+, 0 +).
Fil: Briozzo, Adriana Clotilde. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
Fil: Tarzia, Domingo Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Austral. Facultad de Ciencias Empresariales. Departamento de Matemáticas; Argentina
description A one-phase unidimensional Stefan problem with a convective boundary condition at the fixed face x = 0, with a heat transfer coefficient h > 0 (proportional to the Biot number) and an initial position of the free boundary b = s(0) > 0 is considered. We study the limit of the temperature θ = θb,h and the free boundary s = sb,h when b → 0 + (for all h > 0) and we also obtain an order of convergence. Moreover, we study the limit of the temperature θb,h and the free boundary sb,h when (b, h) → (0+, 0 +).
publishDate 2015
dc.date.none.fl_str_mv 2015-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/53872
Briozzo, Adriana Clotilde; Tarzia, Domingo Alberto; Convergence of the solution of the one-phase Stefan problem with respect two parameters; Universidad Austral; MAT - Serie A; 20; 7-2015; 31-38
1515-4904
CONICET Digital
CONICET
url http://hdl.handle.net/11336/53872
identifier_str_mv Briozzo, Adriana Clotilde; Tarzia, Domingo Alberto; Convergence of the solution of the one-phase Stefan problem with respect two parameters; Universidad Austral; MAT - Serie A; 20; 7-2015; 31-38
1515-4904
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.austral.edu.ar/cienciasempresariales/wp-content/uploads/2016/04/TarziaEd-MAT-SerieA-202015.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidad Austral
publisher.none.fl_str_mv Universidad Austral
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613876452163584
score 13.070432