Well-posedness, linear perturbations, and mass conservation for the axisymmetric Einstein equations
- Autores
- Dain, Sergio Alejandro; Ortiz, Omar Eduardo
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For axially symmetric solutions of Einstein equations there exists a gauge which has the remarkable property that the total mass can be written as a conserved, positive definite, integral on the spacelike slices. The mass integral provides a nonlinear control of the variables along the whole evolution. In this gauge, Einstein equations reduce to a coupled hyperbolic-elliptic system which is formally singular at the axis. As a first step in analyzing this system of equations we study linear perturbations on a flat background. We prove that the linear equations reduce to a very simple system of equations which provide, though the mass formula, useful insight into the structure of the full system. However, the singular behavior of the coefficients at the axis makes the study of this linear system difficult from the analytical point of view. In order to understand the behavior of the solutions, we study the numerical evolution of them. We provide strong numerical evidence that the system is well-posed and that its solutions have the expected behavior. Finally, this linear system allows us to formulate a model problem which is physically interesting in itself, since it is connected with the linear stability of black hole solutions in axial symmetry. This model can contribute significantly to solve the nonlinear problem and at the same time it appears to be tractable.
Fil: Dain, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina
Fil: Ortiz, Omar Eduardo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina - Materia
-
MASS
CONSERVATION
AXIALSYMMETRY
WELL-POSEDNESS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/190234
Ver los metadatos del registro completo
id |
CONICETDig_3bb4f80315188bcef32c017b4a660637 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/190234 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Well-posedness, linear perturbations, and mass conservation for the axisymmetric Einstein equationsDain, Sergio AlejandroOrtiz, Omar EduardoMASSCONSERVATIONAXIALSYMMETRYWELL-POSEDNESShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1For axially symmetric solutions of Einstein equations there exists a gauge which has the remarkable property that the total mass can be written as a conserved, positive definite, integral on the spacelike slices. The mass integral provides a nonlinear control of the variables along the whole evolution. In this gauge, Einstein equations reduce to a coupled hyperbolic-elliptic system which is formally singular at the axis. As a first step in analyzing this system of equations we study linear perturbations on a flat background. We prove that the linear equations reduce to a very simple system of equations which provide, though the mass formula, useful insight into the structure of the full system. However, the singular behavior of the coefficients at the axis makes the study of this linear system difficult from the analytical point of view. In order to understand the behavior of the solutions, we study the numerical evolution of them. We provide strong numerical evidence that the system is well-posed and that its solutions have the expected behavior. Finally, this linear system allows us to formulate a model problem which is physically interesting in itself, since it is connected with the linear stability of black hole solutions in axial symmetry. This model can contribute significantly to solve the nonlinear problem and at the same time it appears to be tractable.Fil: Dain, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; ArgentinaFil: Ortiz, Omar Eduardo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaAmerican Physical Society2010-02-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/190234Dain, Sergio Alejandro; Ortiz, Omar Eduardo; Well-posedness, linear perturbations, and mass conservation for the axisymmetric Einstein equations; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 81; 4; 26-2-2010; 1-201550-79981550-2368CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.aps.org/doi/10.1103/PhysRevD.81.044040info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.81.044040info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:50:21Zoai:ri.conicet.gov.ar:11336/190234instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:50:21.494CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Well-posedness, linear perturbations, and mass conservation for the axisymmetric Einstein equations |
title |
Well-posedness, linear perturbations, and mass conservation for the axisymmetric Einstein equations |
spellingShingle |
Well-posedness, linear perturbations, and mass conservation for the axisymmetric Einstein equations Dain, Sergio Alejandro MASS CONSERVATION AXIALSYMMETRY WELL-POSEDNESS |
title_short |
Well-posedness, linear perturbations, and mass conservation for the axisymmetric Einstein equations |
title_full |
Well-posedness, linear perturbations, and mass conservation for the axisymmetric Einstein equations |
title_fullStr |
Well-posedness, linear perturbations, and mass conservation for the axisymmetric Einstein equations |
title_full_unstemmed |
Well-posedness, linear perturbations, and mass conservation for the axisymmetric Einstein equations |
title_sort |
Well-posedness, linear perturbations, and mass conservation for the axisymmetric Einstein equations |
dc.creator.none.fl_str_mv |
Dain, Sergio Alejandro Ortiz, Omar Eduardo |
author |
Dain, Sergio Alejandro |
author_facet |
Dain, Sergio Alejandro Ortiz, Omar Eduardo |
author_role |
author |
author2 |
Ortiz, Omar Eduardo |
author2_role |
author |
dc.subject.none.fl_str_mv |
MASS CONSERVATION AXIALSYMMETRY WELL-POSEDNESS |
topic |
MASS CONSERVATION AXIALSYMMETRY WELL-POSEDNESS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
For axially symmetric solutions of Einstein equations there exists a gauge which has the remarkable property that the total mass can be written as a conserved, positive definite, integral on the spacelike slices. The mass integral provides a nonlinear control of the variables along the whole evolution. In this gauge, Einstein equations reduce to a coupled hyperbolic-elliptic system which is formally singular at the axis. As a first step in analyzing this system of equations we study linear perturbations on a flat background. We prove that the linear equations reduce to a very simple system of equations which provide, though the mass formula, useful insight into the structure of the full system. However, the singular behavior of the coefficients at the axis makes the study of this linear system difficult from the analytical point of view. In order to understand the behavior of the solutions, we study the numerical evolution of them. We provide strong numerical evidence that the system is well-posed and that its solutions have the expected behavior. Finally, this linear system allows us to formulate a model problem which is physically interesting in itself, since it is connected with the linear stability of black hole solutions in axial symmetry. This model can contribute significantly to solve the nonlinear problem and at the same time it appears to be tractable. Fil: Dain, Sergio Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina Fil: Ortiz, Omar Eduardo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina |
description |
For axially symmetric solutions of Einstein equations there exists a gauge which has the remarkable property that the total mass can be written as a conserved, positive definite, integral on the spacelike slices. The mass integral provides a nonlinear control of the variables along the whole evolution. In this gauge, Einstein equations reduce to a coupled hyperbolic-elliptic system which is formally singular at the axis. As a first step in analyzing this system of equations we study linear perturbations on a flat background. We prove that the linear equations reduce to a very simple system of equations which provide, though the mass formula, useful insight into the structure of the full system. However, the singular behavior of the coefficients at the axis makes the study of this linear system difficult from the analytical point of view. In order to understand the behavior of the solutions, we study the numerical evolution of them. We provide strong numerical evidence that the system is well-posed and that its solutions have the expected behavior. Finally, this linear system allows us to formulate a model problem which is physically interesting in itself, since it is connected with the linear stability of black hole solutions in axial symmetry. This model can contribute significantly to solve the nonlinear problem and at the same time it appears to be tractable. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-02-26 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/190234 Dain, Sergio Alejandro; Ortiz, Omar Eduardo; Well-posedness, linear perturbations, and mass conservation for the axisymmetric Einstein equations; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 81; 4; 26-2-2010; 1-20 1550-7998 1550-2368 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/190234 |
identifier_str_mv |
Dain, Sergio Alejandro; Ortiz, Omar Eduardo; Well-posedness, linear perturbations, and mass conservation for the axisymmetric Einstein equations; American Physical Society; Physical Review D: Particles, Fields, Gravitation and Cosmology; 81; 4; 26-2-2010; 1-20 1550-7998 1550-2368 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.aps.org/doi/10.1103/PhysRevD.81.044040 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevD.81.044040 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083027615088640 |
score |
13.22299 |