Dynamics of partially thermalized solutions of the Burgers equation

Autores
Clark Di Leoni, Patricio; Mininni, Pablo Daniel; Brachet, Marc E.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The spectrally truncated, or finite dimensional, versions of several equations of inviscid flows display transient solutions which match their viscous counterparts, but which eventually lead to thermalized states in which energy is in equipartition between all modes. Recent advances in the study of the Burgers equation show that the thermalization process is triggered after the formation of sharp localized structures within the flow called "tygers." We show that the process of thermalization first takes place in well defined subdomains, before engulfing the whole space. Using spatio-temporal analysis on data from numerical simulations, we study propagation of tygers and find that they move at a well defined mean speed that can be obtained from energy conservation arguments.
Fil: Clark Di Leoni, Patricio. University of Rome “Tor Vergata”; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Brachet, Marc E.. Université Paris Diderot - Paris 7; Francia
Materia
BURGERS EQUATION
NONLINEAR DYNAMICS
SHOCKS
INVISCID FLOWS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/98680

id CONICETDig_4231185cc8f9d25fac37d72c338eddff
oai_identifier_str oai:ri.conicet.gov.ar:11336/98680
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Dynamics of partially thermalized solutions of the Burgers equationClark Di Leoni, PatricioMininni, Pablo DanielBrachet, Marc E.BURGERS EQUATIONNONLINEAR DYNAMICSSHOCKSINVISCID FLOWShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The spectrally truncated, or finite dimensional, versions of several equations of inviscid flows display transient solutions which match their viscous counterparts, but which eventually lead to thermalized states in which energy is in equipartition between all modes. Recent advances in the study of the Burgers equation show that the thermalization process is triggered after the formation of sharp localized structures within the flow called "tygers." We show that the process of thermalization first takes place in well defined subdomains, before engulfing the whole space. Using spatio-temporal analysis on data from numerical simulations, we study propagation of tygers and find that they move at a well defined mean speed that can be obtained from energy conservation arguments.Fil: Clark Di Leoni, Patricio. University of Rome “Tor Vergata”; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Brachet, Marc E.. Université Paris Diderot - Paris 7; FranciaAmerican Physical Society2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98680Clark Di Leoni, Patricio; Mininni, Pablo Daniel; Brachet, Marc E.; Dynamics of partially thermalized solutions of the Burgers equation; American Physical Society; Physical Review Fluids; 3; 1; 1-2018; 1-9; 0146032469-990XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevFluids.3.014603info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.3.014603info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1711.08618info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:00:50Zoai:ri.conicet.gov.ar:11336/98680instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:00:50.762CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Dynamics of partially thermalized solutions of the Burgers equation
title Dynamics of partially thermalized solutions of the Burgers equation
spellingShingle Dynamics of partially thermalized solutions of the Burgers equation
Clark Di Leoni, Patricio
BURGERS EQUATION
NONLINEAR DYNAMICS
SHOCKS
INVISCID FLOWS
title_short Dynamics of partially thermalized solutions of the Burgers equation
title_full Dynamics of partially thermalized solutions of the Burgers equation
title_fullStr Dynamics of partially thermalized solutions of the Burgers equation
title_full_unstemmed Dynamics of partially thermalized solutions of the Burgers equation
title_sort Dynamics of partially thermalized solutions of the Burgers equation
dc.creator.none.fl_str_mv Clark Di Leoni, Patricio
Mininni, Pablo Daniel
Brachet, Marc E.
author Clark Di Leoni, Patricio
author_facet Clark Di Leoni, Patricio
Mininni, Pablo Daniel
Brachet, Marc E.
author_role author
author2 Mininni, Pablo Daniel
Brachet, Marc E.
author2_role author
author
dc.subject.none.fl_str_mv BURGERS EQUATION
NONLINEAR DYNAMICS
SHOCKS
INVISCID FLOWS
topic BURGERS EQUATION
NONLINEAR DYNAMICS
SHOCKS
INVISCID FLOWS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The spectrally truncated, or finite dimensional, versions of several equations of inviscid flows display transient solutions which match their viscous counterparts, but which eventually lead to thermalized states in which energy is in equipartition between all modes. Recent advances in the study of the Burgers equation show that the thermalization process is triggered after the formation of sharp localized structures within the flow called "tygers." We show that the process of thermalization first takes place in well defined subdomains, before engulfing the whole space. Using spatio-temporal analysis on data from numerical simulations, we study propagation of tygers and find that they move at a well defined mean speed that can be obtained from energy conservation arguments.
Fil: Clark Di Leoni, Patricio. University of Rome “Tor Vergata”; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Brachet, Marc E.. Université Paris Diderot - Paris 7; Francia
description The spectrally truncated, or finite dimensional, versions of several equations of inviscid flows display transient solutions which match their viscous counterparts, but which eventually lead to thermalized states in which energy is in equipartition between all modes. Recent advances in the study of the Burgers equation show that the thermalization process is triggered after the formation of sharp localized structures within the flow called "tygers." We show that the process of thermalization first takes place in well defined subdomains, before engulfing the whole space. Using spatio-temporal analysis on data from numerical simulations, we study propagation of tygers and find that they move at a well defined mean speed that can be obtained from energy conservation arguments.
publishDate 2018
dc.date.none.fl_str_mv 2018-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/98680
Clark Di Leoni, Patricio; Mininni, Pablo Daniel; Brachet, Marc E.; Dynamics of partially thermalized solutions of the Burgers equation; American Physical Society; Physical Review Fluids; 3; 1; 1-2018; 1-9; 014603
2469-990X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/98680
identifier_str_mv Clark Di Leoni, Patricio; Mininni, Pablo Daniel; Brachet, Marc E.; Dynamics of partially thermalized solutions of the Burgers equation; American Physical Society; Physical Review Fluids; 3; 1; 1-2018; 1-9; 014603
2469-990X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevFluids.3.014603
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.3.014603
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1711.08618
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613794604515328
score 13.070432