Dynamics of partially thermalized solutions of the Burgers equation
- Autores
- Clark Di Leoni, Patricio; Mininni, Pablo Daniel; Brachet, Marc E.
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The spectrally truncated, or finite dimensional, versions of several equations of inviscid flows display transient solutions which match their viscous counterparts, but which eventually lead to thermalized states in which energy is in equipartition between all modes. Recent advances in the study of the Burgers equation show that the thermalization process is triggered after the formation of sharp localized structures within the flow called "tygers." We show that the process of thermalization first takes place in well defined subdomains, before engulfing the whole space. Using spatio-temporal analysis on data from numerical simulations, we study propagation of tygers and find that they move at a well defined mean speed that can be obtained from energy conservation arguments.
Fil: Clark Di Leoni, Patricio. University of Rome “Tor Vergata”; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina
Fil: Brachet, Marc E.. Université Paris Diderot - Paris 7; Francia - Materia
-
BURGERS EQUATION
NONLINEAR DYNAMICS
SHOCKS
INVISCID FLOWS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98680
Ver los metadatos del registro completo
id |
CONICETDig_4231185cc8f9d25fac37d72c338eddff |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98680 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Dynamics of partially thermalized solutions of the Burgers equationClark Di Leoni, PatricioMininni, Pablo DanielBrachet, Marc E.BURGERS EQUATIONNONLINEAR DYNAMICSSHOCKSINVISCID FLOWShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1The spectrally truncated, or finite dimensional, versions of several equations of inviscid flows display transient solutions which match their viscous counterparts, but which eventually lead to thermalized states in which energy is in equipartition between all modes. Recent advances in the study of the Burgers equation show that the thermalization process is triggered after the formation of sharp localized structures within the flow called "tygers." We show that the process of thermalization first takes place in well defined subdomains, before engulfing the whole space. Using spatio-temporal analysis on data from numerical simulations, we study propagation of tygers and find that they move at a well defined mean speed that can be obtained from energy conservation arguments.Fil: Clark Di Leoni, Patricio. University of Rome “Tor Vergata”; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; ArgentinaFil: Brachet, Marc E.. Université Paris Diderot - Paris 7; FranciaAmerican Physical Society2018-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98680Clark Di Leoni, Patricio; Mininni, Pablo Daniel; Brachet, Marc E.; Dynamics of partially thermalized solutions of the Burgers equation; American Physical Society; Physical Review Fluids; 3; 1; 1-2018; 1-9; 0146032469-990XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevFluids.3.014603info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.3.014603info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1711.08618info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:00:50Zoai:ri.conicet.gov.ar:11336/98680instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:00:50.762CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Dynamics of partially thermalized solutions of the Burgers equation |
title |
Dynamics of partially thermalized solutions of the Burgers equation |
spellingShingle |
Dynamics of partially thermalized solutions of the Burgers equation Clark Di Leoni, Patricio BURGERS EQUATION NONLINEAR DYNAMICS SHOCKS INVISCID FLOWS |
title_short |
Dynamics of partially thermalized solutions of the Burgers equation |
title_full |
Dynamics of partially thermalized solutions of the Burgers equation |
title_fullStr |
Dynamics of partially thermalized solutions of the Burgers equation |
title_full_unstemmed |
Dynamics of partially thermalized solutions of the Burgers equation |
title_sort |
Dynamics of partially thermalized solutions of the Burgers equation |
dc.creator.none.fl_str_mv |
Clark Di Leoni, Patricio Mininni, Pablo Daniel Brachet, Marc E. |
author |
Clark Di Leoni, Patricio |
author_facet |
Clark Di Leoni, Patricio Mininni, Pablo Daniel Brachet, Marc E. |
author_role |
author |
author2 |
Mininni, Pablo Daniel Brachet, Marc E. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
BURGERS EQUATION NONLINEAR DYNAMICS SHOCKS INVISCID FLOWS |
topic |
BURGERS EQUATION NONLINEAR DYNAMICS SHOCKS INVISCID FLOWS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The spectrally truncated, or finite dimensional, versions of several equations of inviscid flows display transient solutions which match their viscous counterparts, but which eventually lead to thermalized states in which energy is in equipartition between all modes. Recent advances in the study of the Burgers equation show that the thermalization process is triggered after the formation of sharp localized structures within the flow called "tygers." We show that the process of thermalization first takes place in well defined subdomains, before engulfing the whole space. Using spatio-temporal analysis on data from numerical simulations, we study propagation of tygers and find that they move at a well defined mean speed that can be obtained from energy conservation arguments. Fil: Clark Di Leoni, Patricio. University of Rome “Tor Vergata”; Italia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Mininni, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentina Fil: Brachet, Marc E.. Université Paris Diderot - Paris 7; Francia |
description |
The spectrally truncated, or finite dimensional, versions of several equations of inviscid flows display transient solutions which match their viscous counterparts, but which eventually lead to thermalized states in which energy is in equipartition between all modes. Recent advances in the study of the Burgers equation show that the thermalization process is triggered after the formation of sharp localized structures within the flow called "tygers." We show that the process of thermalization first takes place in well defined subdomains, before engulfing the whole space. Using spatio-temporal analysis on data from numerical simulations, we study propagation of tygers and find that they move at a well defined mean speed that can be obtained from energy conservation arguments. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98680 Clark Di Leoni, Patricio; Mininni, Pablo Daniel; Brachet, Marc E.; Dynamics of partially thermalized solutions of the Burgers equation; American Physical Society; Physical Review Fluids; 3; 1; 1-2018; 1-9; 014603 2469-990X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/98680 |
identifier_str_mv |
Clark Di Leoni, Patricio; Mininni, Pablo Daniel; Brachet, Marc E.; Dynamics of partially thermalized solutions of the Burgers equation; American Physical Society; Physical Review Fluids; 3; 1; 1-2018; 1-9; 014603 2469-990X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevFluids.3.014603 info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.3.014603 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1711.08618 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613794604515328 |
score |
13.070432 |