Molecular dynamics simulations of shock-induced plasticity in tantalum

Autores
Tramontina Videla, Diego Ramiro; Erhart, Paul; Germann, Timothy; Hawreliak, James; Higginbotham, Andrew; Park, Nigel; Ravelo, Ramón; Stukowski, Alexander; Suggit, Mathew; Tang, Yizhe; Wark, Justin; Bringa, Eduardo Marcial
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We present Non-Equilibrium Molecular Dynamics (NEMD) simulations of shock wave compression along the [001] direction in monocrystalline Tantalum, including pre-existing defects which act as dislocation sources. We use a new Embedded Atom Model (EAM) potential and study the nucleation and evolution of dislocations as a function of shock pressure and loading rise time. We find that the flow stress and dislocation density behind the shock front depend on strain rate. We find excellent agreement with recent experimental results on strength and recovered microstructure, which goes from dislocations to a mixture of dislocations and twins, to twinning dominated response, as the shock pressure increases.
Fil: Tramontina Videla, Diego Ramiro. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Ministerio de Ciencia. Tecnología e Innovación Productiva. Agencia Nacional de Promoción Cientifíca y Tecnológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Erhart, Paul. Lawrence Livermore National Laboratory; Estados Unidos. Chalmer University of Technology; Suecia
Fil: Germann, Timothy. Los Alamos National Laboratory; Estados Unidos
Fil: Hawreliak, James. Los Alamos National Laboratory; Estados Unidos
Fil: Higginbotham, Andrew. University of Oxford. Department of Physics; Reino Unido
Fil: Park, Nigel. Atomic Weapons Establishment. Materials Modeling Group; Reino Unido
Fil: Ravelo, Ramón. Los Alamos National Laboratory; Estados Unidos. University of Texas at El Paso; Estados Unidos
Fil: Stukowski, Alexander. Universitat Technische Darmstadt; Alemania
Fil: Suggit, Mathew. University of Oxford. Department of Physics; Reino Unido
Fil: Tang, Yizhe. University Johns Hopkins; Estados Unidos
Fil: Wark, Justin. University of Oxford. Department of Physics; Reino Unido
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Materia
Tantalum
Molecular Dynamics
Shocks
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/32249

id CONICETDig_5a296536845e2d4aa98837d23fdc4a63
oai_identifier_str oai:ri.conicet.gov.ar:11336/32249
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Molecular dynamics simulations of shock-induced plasticity in tantalumTramontina Videla, Diego RamiroErhart, PaulGermann, TimothyHawreliak, JamesHigginbotham, AndrewPark, NigelRavelo, RamónStukowski, AlexanderSuggit, MathewTang, YizheWark, JustinBringa, Eduardo MarcialTantalumMolecular DynamicsShockshttps://purl.org/becyt/ford/2.5https://purl.org/becyt/ford/2We present Non-Equilibrium Molecular Dynamics (NEMD) simulations of shock wave compression along the [001] direction in monocrystalline Tantalum, including pre-existing defects which act as dislocation sources. We use a new Embedded Atom Model (EAM) potential and study the nucleation and evolution of dislocations as a function of shock pressure and loading rise time. We find that the flow stress and dislocation density behind the shock front depend on strain rate. We find excellent agreement with recent experimental results on strength and recovered microstructure, which goes from dislocations to a mixture of dislocations and twins, to twinning dominated response, as the shock pressure increases.Fil: Tramontina Videla, Diego Ramiro. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Ministerio de Ciencia. Tecnología e Innovación Productiva. Agencia Nacional de Promoción Cientifíca y Tecnológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaFil: Erhart, Paul. Lawrence Livermore National Laboratory; Estados Unidos. Chalmer University of Technology; SueciaFil: Germann, Timothy. Los Alamos National Laboratory; Estados UnidosFil: Hawreliak, James. Los Alamos National Laboratory; Estados UnidosFil: Higginbotham, Andrew. University of Oxford. Department of Physics; Reino UnidoFil: Park, Nigel. Atomic Weapons Establishment. Materials Modeling Group; Reino UnidoFil: Ravelo, Ramón. Los Alamos National Laboratory; Estados Unidos. University of Texas at El Paso; Estados UnidosFil: Stukowski, Alexander. Universitat Technische Darmstadt; AlemaniaFil: Suggit, Mathew. University of Oxford. Department of Physics; Reino UnidoFil: Tang, Yizhe. University Johns Hopkins; Estados UnidosFil: Wark, Justin. University of Oxford. Department of Physics; Reino UnidoFil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; ArgentinaElsevier2013-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32249Bringa, Eduardo Marcial; Wark, Justin; Tang, Yizhe; Suggit, Mathew; Stukowski, Alexander; Ravelo, Ramón; et al.; Molecular dynamics simulations of shock-induced plasticity in tantalum; Elsevier; High Energy Density Physics; 10; 10-2013; 9-151574-1818CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.hedp.2013.10.007info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S157418181300178Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:31:56Zoai:ri.conicet.gov.ar:11336/32249instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:31:57.009CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Molecular dynamics simulations of shock-induced plasticity in tantalum
title Molecular dynamics simulations of shock-induced plasticity in tantalum
spellingShingle Molecular dynamics simulations of shock-induced plasticity in tantalum
Tramontina Videla, Diego Ramiro
Tantalum
Molecular Dynamics
Shocks
title_short Molecular dynamics simulations of shock-induced plasticity in tantalum
title_full Molecular dynamics simulations of shock-induced plasticity in tantalum
title_fullStr Molecular dynamics simulations of shock-induced plasticity in tantalum
title_full_unstemmed Molecular dynamics simulations of shock-induced plasticity in tantalum
title_sort Molecular dynamics simulations of shock-induced plasticity in tantalum
dc.creator.none.fl_str_mv Tramontina Videla, Diego Ramiro
Erhart, Paul
Germann, Timothy
Hawreliak, James
Higginbotham, Andrew
Park, Nigel
Ravelo, Ramón
Stukowski, Alexander
Suggit, Mathew
Tang, Yizhe
Wark, Justin
Bringa, Eduardo Marcial
author Tramontina Videla, Diego Ramiro
author_facet Tramontina Videla, Diego Ramiro
Erhart, Paul
Germann, Timothy
Hawreliak, James
Higginbotham, Andrew
Park, Nigel
Ravelo, Ramón
Stukowski, Alexander
Suggit, Mathew
Tang, Yizhe
Wark, Justin
Bringa, Eduardo Marcial
author_role author
author2 Erhart, Paul
Germann, Timothy
Hawreliak, James
Higginbotham, Andrew
Park, Nigel
Ravelo, Ramón
Stukowski, Alexander
Suggit, Mathew
Tang, Yizhe
Wark, Justin
Bringa, Eduardo Marcial
author2_role author
author
author
author
author
author
author
author
author
author
author
dc.subject.none.fl_str_mv Tantalum
Molecular Dynamics
Shocks
topic Tantalum
Molecular Dynamics
Shocks
purl_subject.fl_str_mv https://purl.org/becyt/ford/2.5
https://purl.org/becyt/ford/2
dc.description.none.fl_txt_mv We present Non-Equilibrium Molecular Dynamics (NEMD) simulations of shock wave compression along the [001] direction in monocrystalline Tantalum, including pre-existing defects which act as dislocation sources. We use a new Embedded Atom Model (EAM) potential and study the nucleation and evolution of dislocations as a function of shock pressure and loading rise time. We find that the flow stress and dislocation density behind the shock front depend on strain rate. We find excellent agreement with recent experimental results on strength and recovered microstructure, which goes from dislocations to a mixture of dislocations and twins, to twinning dominated response, as the shock pressure increases.
Fil: Tramontina Videla, Diego Ramiro. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Ministerio de Ciencia. Tecnología e Innovación Productiva. Agencia Nacional de Promoción Cientifíca y Tecnológica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
Fil: Erhart, Paul. Lawrence Livermore National Laboratory; Estados Unidos. Chalmer University of Technology; Suecia
Fil: Germann, Timothy. Los Alamos National Laboratory; Estados Unidos
Fil: Hawreliak, James. Los Alamos National Laboratory; Estados Unidos
Fil: Higginbotham, Andrew. University of Oxford. Department of Physics; Reino Unido
Fil: Park, Nigel. Atomic Weapons Establishment. Materials Modeling Group; Reino Unido
Fil: Ravelo, Ramón. Los Alamos National Laboratory; Estados Unidos. University of Texas at El Paso; Estados Unidos
Fil: Stukowski, Alexander. Universitat Technische Darmstadt; Alemania
Fil: Suggit, Mathew. University of Oxford. Department of Physics; Reino Unido
Fil: Tang, Yizhe. University Johns Hopkins; Estados Unidos
Fil: Wark, Justin. University of Oxford. Department of Physics; Reino Unido
Fil: Bringa, Eduardo Marcial. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
description We present Non-Equilibrium Molecular Dynamics (NEMD) simulations of shock wave compression along the [001] direction in monocrystalline Tantalum, including pre-existing defects which act as dislocation sources. We use a new Embedded Atom Model (EAM) potential and study the nucleation and evolution of dislocations as a function of shock pressure and loading rise time. We find that the flow stress and dislocation density behind the shock front depend on strain rate. We find excellent agreement with recent experimental results on strength and recovered microstructure, which goes from dislocations to a mixture of dislocations and twins, to twinning dominated response, as the shock pressure increases.
publishDate 2013
dc.date.none.fl_str_mv 2013-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/32249
Bringa, Eduardo Marcial; Wark, Justin; Tang, Yizhe; Suggit, Mathew; Stukowski, Alexander; Ravelo, Ramón; et al.; Molecular dynamics simulations of shock-induced plasticity in tantalum; Elsevier; High Energy Density Physics; 10; 10-2013; 9-15
1574-1818
CONICET Digital
CONICET
url http://hdl.handle.net/11336/32249
identifier_str_mv Bringa, Eduardo Marcial; Wark, Justin; Tang, Yizhe; Suggit, Mathew; Stukowski, Alexander; Ravelo, Ramón; et al.; Molecular dynamics simulations of shock-induced plasticity in tantalum; Elsevier; High Energy Density Physics; 10; 10-2013; 9-15
1574-1818
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.hedp.2013.10.007
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S157418181300178X
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614331883323392
score 13.070432