Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian

Autores
del Pezzo, Leandro Martin; Quaas, Alexander
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we extend two nowadays classical results to a nonlinear Dirichlet problem to equations involving the fractional p-Laplacian. The first result is an existence in a non-resonant range more specific between the first and second eigenvalue of the fractional p-Laplacian. The second result is the anti-maximum principle for the fractional p-Laplacian.
Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Quaas, Alexander. Universidad Técnica Federico Santa María. Departamento de Matemática; Chile
Materia
Anti-Maximum Principle
Existence Results
Fractional P-Laplacian
Non-Resonant
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/60059

id CONICETDig_41ce4416bcae0a993d66732281d6671d
oai_identifier_str oai:ri.conicet.gov.ar:11336/60059
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplaciandel Pezzo, Leandro MartinQuaas, AlexanderAnti-Maximum PrincipleExistence ResultsFractional P-LaplacianNon-Resonanthttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we extend two nowadays classical results to a nonlinear Dirichlet problem to equations involving the fractional p-Laplacian. The first result is an existence in a non-resonant range more specific between the first and second eigenvalue of the fractional p-Laplacian. The second result is the anti-maximum principle for the fractional p-Laplacian.Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Quaas, Alexander. Universidad Técnica Federico Santa María. Departamento de Matemática; ChileSpringer2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60059del Pezzo, Leandro Martin; Quaas, Alexander; Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian; Springer; Journal Of Fixed Point Theory And Applications; 19; 1; 3-2017; 939-9581661-77381661-7746CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11784-017-0405-5info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11784-017-0405-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:29:05Zoai:ri.conicet.gov.ar:11336/60059instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:29:05.518CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian
title Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian
spellingShingle Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian
del Pezzo, Leandro Martin
Anti-Maximum Principle
Existence Results
Fractional P-Laplacian
Non-Resonant
title_short Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian
title_full Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian
title_fullStr Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian
title_full_unstemmed Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian
title_sort Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian
dc.creator.none.fl_str_mv del Pezzo, Leandro Martin
Quaas, Alexander
author del Pezzo, Leandro Martin
author_facet del Pezzo, Leandro Martin
Quaas, Alexander
author_role author
author2 Quaas, Alexander
author2_role author
dc.subject.none.fl_str_mv Anti-Maximum Principle
Existence Results
Fractional P-Laplacian
Non-Resonant
topic Anti-Maximum Principle
Existence Results
Fractional P-Laplacian
Non-Resonant
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we extend two nowadays classical results to a nonlinear Dirichlet problem to equations involving the fractional p-Laplacian. The first result is an existence in a non-resonant range more specific between the first and second eigenvalue of the fractional p-Laplacian. The second result is the anti-maximum principle for the fractional p-Laplacian.
Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Quaas, Alexander. Universidad Técnica Federico Santa María. Departamento de Matemática; Chile
description In this paper we extend two nowadays classical results to a nonlinear Dirichlet problem to equations involving the fractional p-Laplacian. The first result is an existence in a non-resonant range more specific between the first and second eigenvalue of the fractional p-Laplacian. The second result is the anti-maximum principle for the fractional p-Laplacian.
publishDate 2017
dc.date.none.fl_str_mv 2017-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/60059
del Pezzo, Leandro Martin; Quaas, Alexander; Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian; Springer; Journal Of Fixed Point Theory And Applications; 19; 1; 3-2017; 939-958
1661-7738
1661-7746
CONICET Digital
CONICET
url http://hdl.handle.net/11336/60059
identifier_str_mv del Pezzo, Leandro Martin; Quaas, Alexander; Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian; Springer; Journal Of Fixed Point Theory And Applications; 19; 1; 3-2017; 939-958
1661-7738
1661-7746
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s11784-017-0405-5
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11784-017-0405-5
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846781873973362688
score 12.982451