Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian
- Autores
- del Pezzo, Leandro Martin; Quaas, Alexander
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we extend two nowadays classical results to a nonlinear Dirichlet problem to equations involving the fractional p-Laplacian. The first result is an existence in a non-resonant range more specific between the first and second eigenvalue of the fractional p-Laplacian. The second result is the anti-maximum principle for the fractional p-Laplacian.
Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Quaas, Alexander. Universidad Técnica Federico Santa María. Departamento de Matemática; Chile - Materia
-
Anti-Maximum Principle
Existence Results
Fractional P-Laplacian
Non-Resonant - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/60059
Ver los metadatos del registro completo
| id |
CONICETDig_41ce4416bcae0a993d66732281d6671d |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/60059 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplaciandel Pezzo, Leandro MartinQuaas, AlexanderAnti-Maximum PrincipleExistence ResultsFractional P-LaplacianNon-Resonanthttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we extend two nowadays classical results to a nonlinear Dirichlet problem to equations involving the fractional p-Laplacian. The first result is an existence in a non-resonant range more specific between the first and second eigenvalue of the fractional p-Laplacian. The second result is the anti-maximum principle for the fractional p-Laplacian.Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Quaas, Alexander. Universidad Técnica Federico Santa María. Departamento de Matemática; ChileSpringer2017-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/60059del Pezzo, Leandro Martin; Quaas, Alexander; Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian; Springer; Journal Of Fixed Point Theory And Applications; 19; 1; 3-2017; 939-9581661-77381661-7746CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s11784-017-0405-5info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11784-017-0405-5info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:45:04Zoai:ri.conicet.gov.ar:11336/60059instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:45:04.543CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian |
| title |
Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian |
| spellingShingle |
Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian del Pezzo, Leandro Martin Anti-Maximum Principle Existence Results Fractional P-Laplacian Non-Resonant |
| title_short |
Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian |
| title_full |
Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian |
| title_fullStr |
Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian |
| title_full_unstemmed |
Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian |
| title_sort |
Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian |
| dc.creator.none.fl_str_mv |
del Pezzo, Leandro Martin Quaas, Alexander |
| author |
del Pezzo, Leandro Martin |
| author_facet |
del Pezzo, Leandro Martin Quaas, Alexander |
| author_role |
author |
| author2 |
Quaas, Alexander |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Anti-Maximum Principle Existence Results Fractional P-Laplacian Non-Resonant |
| topic |
Anti-Maximum Principle Existence Results Fractional P-Laplacian Non-Resonant |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this paper we extend two nowadays classical results to a nonlinear Dirichlet problem to equations involving the fractional p-Laplacian. The first result is an existence in a non-resonant range more specific between the first and second eigenvalue of the fractional p-Laplacian. The second result is the anti-maximum principle for the fractional p-Laplacian. Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Quaas, Alexander. Universidad Técnica Federico Santa María. Departamento de Matemática; Chile |
| description |
In this paper we extend two nowadays classical results to a nonlinear Dirichlet problem to equations involving the fractional p-Laplacian. The first result is an existence in a non-resonant range more specific between the first and second eigenvalue of the fractional p-Laplacian. The second result is the anti-maximum principle for the fractional p-Laplacian. |
| publishDate |
2017 |
| dc.date.none.fl_str_mv |
2017-03 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/60059 del Pezzo, Leandro Martin; Quaas, Alexander; Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian; Springer; Journal Of Fixed Point Theory And Applications; 19; 1; 3-2017; 939-958 1661-7738 1661-7746 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/60059 |
| identifier_str_mv |
del Pezzo, Leandro Martin; Quaas, Alexander; Non-resonant Fredholm alternative and anti-maximum principle for the fractional p-Laplacian; Springer; Journal Of Fixed Point Theory And Applications; 19; 1; 3-2017; 939-958 1661-7738 1661-7746 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s11784-017-0405-5 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11784-017-0405-5 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer |
| publisher.none.fl_str_mv |
Springer |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597804549668864 |
| score |
13.24909 |