The Violation of Objectivity in Laplace Formulations of the Navier-Stokes Equations
- Autores
- Limache, Alejandro Cesar; Idelsohn, Sergio Rodolfo; Rossi, R.; Oñate, E.
- Año de publicación
- 2007
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The Navier–Stokes equations written in Laplace form are often the starting point of many numerical methods for the simulation of viscous flows. Imposing the natural boundary conditions of the Laplace form or neglecting the viscous contributions on free surfaces are traditionally considered reasonable and harmless assumptions. With these boundary conditions any formulation derived from integral methods (like finite elements or finite volumes) recovers the pure Laplacian aspect of the strong form of the equations. This approach has also the advantage of being convenient in terms of computational effort and, as a consequence, it is used extensively. However, we have recently discovered that these resulting Laplacian formulations violate a basic axiom of continuum mechanics: the principle of objectivity. In the present article we give an accurate account about these topics. We also show that unexpected differences may sometimes arise between Laplace discretizations and divergence discretizations.
Fil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina
Fil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. International Center for Numerical Methods in Engineering; España
Fil: Rossi, R.. International Center for Numerical Methods in Engineering; España
Fil: Oñate, E.. International Center for Numerical Methods in Engineering; España - Materia
-
Navier-Stokes Equations
Objectivity
Laplace Diffusion Operator
Annular Cavity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/20794
Ver los metadatos del registro completo
id |
CONICETDig_0019a429b6ccbe4e492076c199b2dbb0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/20794 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Violation of Objectivity in Laplace Formulations of the Navier-Stokes EquationsLimache, Alejandro CesarIdelsohn, Sergio RodolfoRossi, R.Oñate, E.Navier-Stokes EquationsObjectivityLaplace Diffusion OperatorAnnular Cavityhttps://purl.org/becyt/ford/2.11https://purl.org/becyt/ford/2The Navier–Stokes equations written in Laplace form are often the starting point of many numerical methods for the simulation of viscous flows. Imposing the natural boundary conditions of the Laplace form or neglecting the viscous contributions on free surfaces are traditionally considered reasonable and harmless assumptions. With these boundary conditions any formulation derived from integral methods (like finite elements or finite volumes) recovers the pure Laplacian aspect of the strong form of the equations. This approach has also the advantage of being convenient in terms of computational effort and, as a consequence, it is used extensively. However, we have recently discovered that these resulting Laplacian formulations violate a basic axiom of continuum mechanics: the principle of objectivity. In the present article we give an accurate account about these topics. We also show that unexpected differences may sometimes arise between Laplace discretizations and divergence discretizations.Fil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. International Center for Numerical Methods in Engineering; EspañaFil: Rossi, R.. International Center for Numerical Methods in Engineering; EspañaFil: Oñate, E.. International Center for Numerical Methods in Engineering; EspañaJohn Wiley & Sons Ltd2007-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/20794Limache, Alejandro Cesar; Idelsohn, Sergio Rodolfo; Rossi, R.; Oñate, E.; The Violation of Objectivity in Laplace Formulations of the Navier-Stokes Equations; John Wiley & Sons Ltd; International Journal For Numerical Methods In Fluids; 54; 6-8; 12-2007; 639-6640271-2091CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/fld.1480/abstractinfo:eu-repo/semantics/altIdentifier/doi/10.1002/fld.1480info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:09:02Zoai:ri.conicet.gov.ar:11336/20794instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:09:03.01CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Violation of Objectivity in Laplace Formulations of the Navier-Stokes Equations |
title |
The Violation of Objectivity in Laplace Formulations of the Navier-Stokes Equations |
spellingShingle |
The Violation of Objectivity in Laplace Formulations of the Navier-Stokes Equations Limache, Alejandro Cesar Navier-Stokes Equations Objectivity Laplace Diffusion Operator Annular Cavity |
title_short |
The Violation of Objectivity in Laplace Formulations of the Navier-Stokes Equations |
title_full |
The Violation of Objectivity in Laplace Formulations of the Navier-Stokes Equations |
title_fullStr |
The Violation of Objectivity in Laplace Formulations of the Navier-Stokes Equations |
title_full_unstemmed |
The Violation of Objectivity in Laplace Formulations of the Navier-Stokes Equations |
title_sort |
The Violation of Objectivity in Laplace Formulations of the Navier-Stokes Equations |
dc.creator.none.fl_str_mv |
Limache, Alejandro Cesar Idelsohn, Sergio Rodolfo Rossi, R. Oñate, E. |
author |
Limache, Alejandro Cesar |
author_facet |
Limache, Alejandro Cesar Idelsohn, Sergio Rodolfo Rossi, R. Oñate, E. |
author_role |
author |
author2 |
Idelsohn, Sergio Rodolfo Rossi, R. Oñate, E. |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Navier-Stokes Equations Objectivity Laplace Diffusion Operator Annular Cavity |
topic |
Navier-Stokes Equations Objectivity Laplace Diffusion Operator Annular Cavity |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.11 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
The Navier–Stokes equations written in Laplace form are often the starting point of many numerical methods for the simulation of viscous flows. Imposing the natural boundary conditions of the Laplace form or neglecting the viscous contributions on free surfaces are traditionally considered reasonable and harmless assumptions. With these boundary conditions any formulation derived from integral methods (like finite elements or finite volumes) recovers the pure Laplacian aspect of the strong form of the equations. This approach has also the advantage of being convenient in terms of computational effort and, as a consequence, it is used extensively. However, we have recently discovered that these resulting Laplacian formulations violate a basic axiom of continuum mechanics: the principle of objectivity. In the present article we give an accurate account about these topics. We also show that unexpected differences may sometimes arise between Laplace discretizations and divergence discretizations. Fil: Limache, Alejandro Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina Fil: Idelsohn, Sergio Rodolfo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentina. International Center for Numerical Methods in Engineering; España Fil: Rossi, R.. International Center for Numerical Methods in Engineering; España Fil: Oñate, E.. International Center for Numerical Methods in Engineering; España |
description |
The Navier–Stokes equations written in Laplace form are often the starting point of many numerical methods for the simulation of viscous flows. Imposing the natural boundary conditions of the Laplace form or neglecting the viscous contributions on free surfaces are traditionally considered reasonable and harmless assumptions. With these boundary conditions any formulation derived from integral methods (like finite elements or finite volumes) recovers the pure Laplacian aspect of the strong form of the equations. This approach has also the advantage of being convenient in terms of computational effort and, as a consequence, it is used extensively. However, we have recently discovered that these resulting Laplacian formulations violate a basic axiom of continuum mechanics: the principle of objectivity. In the present article we give an accurate account about these topics. We also show that unexpected differences may sometimes arise between Laplace discretizations and divergence discretizations. |
publishDate |
2007 |
dc.date.none.fl_str_mv |
2007-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/20794 Limache, Alejandro Cesar; Idelsohn, Sergio Rodolfo; Rossi, R.; Oñate, E.; The Violation of Objectivity in Laplace Formulations of the Navier-Stokes Equations; John Wiley & Sons Ltd; International Journal For Numerical Methods In Fluids; 54; 6-8; 12-2007; 639-664 0271-2091 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/20794 |
identifier_str_mv |
Limache, Alejandro Cesar; Idelsohn, Sergio Rodolfo; Rossi, R.; Oñate, E.; The Violation of Objectivity in Laplace Formulations of the Navier-Stokes Equations; John Wiley & Sons Ltd; International Journal For Numerical Methods In Fluids; 54; 6-8; 12-2007; 639-664 0271-2091 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://onlinelibrary.wiley.com/doi/10.1002/fld.1480/abstract info:eu-repo/semantics/altIdentifier/doi/10.1002/fld.1480 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
publisher.none.fl_str_mv |
John Wiley & Sons Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980438608445440 |
score |
12.993085 |