Elliptic equations with critical exponent on a torus invariant region of S3

Autores
Rey, Carolina Ana
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We study the multiplicity of positive solutions of a Brezis–Nirenberg-type problem on a region of the three-dimensional sphere, which is invariant by the natural torus action. In the paper by Brezis and Peletier, the case in which the region is invariant by the (Formula presented.)-action is considered, namely, when the region is a spherical cap. We prove that the number of positive solutions increases as the parameter of the equation tends to (Formula presented.), giving an answer to a particular case of an open problem proposed in the above referred paper.
Fil: Rey, Carolina Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Materia
Brezis-Nirenberg Problem
Nonlinear Elliptic Equations
Yamabe Equation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/55504

id CONICETDig_406bff1e1a76090cd839e284df8c3c07
oai_identifier_str oai:ri.conicet.gov.ar:11336/55504
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Elliptic equations with critical exponent on a torus invariant region of S3Rey, Carolina AnaBrezis-Nirenberg ProblemNonlinear Elliptic EquationsYamabe Equationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the multiplicity of positive solutions of a Brezis–Nirenberg-type problem on a region of the three-dimensional sphere, which is invariant by the natural torus action. In the paper by Brezis and Peletier, the case in which the region is invariant by the (Formula presented.)-action is considered, namely, when the region is a spherical cap. We prove that the number of positive solutions increases as the parameter of the equation tends to (Formula presented.), giving an answer to a particular case of an open problem proposed in the above referred paper.Fil: Rey, Carolina Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaWorld Scientific2017-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55504Rey, Carolina Ana; Elliptic equations with critical exponent on a torus invariant region of S3; World Scientific; Communications In Contemporary Mathematics; 12-2017; 1-230219-1997CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0219199717501000info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219199717501000info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:14:15Zoai:ri.conicet.gov.ar:11336/55504instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:14:15.741CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Elliptic equations with critical exponent on a torus invariant region of S3
title Elliptic equations with critical exponent on a torus invariant region of S3
spellingShingle Elliptic equations with critical exponent on a torus invariant region of S3
Rey, Carolina Ana
Brezis-Nirenberg Problem
Nonlinear Elliptic Equations
Yamabe Equation
title_short Elliptic equations with critical exponent on a torus invariant region of S3
title_full Elliptic equations with critical exponent on a torus invariant region of S3
title_fullStr Elliptic equations with critical exponent on a torus invariant region of S3
title_full_unstemmed Elliptic equations with critical exponent on a torus invariant region of S3
title_sort Elliptic equations with critical exponent on a torus invariant region of S3
dc.creator.none.fl_str_mv Rey, Carolina Ana
author Rey, Carolina Ana
author_facet Rey, Carolina Ana
author_role author
dc.subject.none.fl_str_mv Brezis-Nirenberg Problem
Nonlinear Elliptic Equations
Yamabe Equation
topic Brezis-Nirenberg Problem
Nonlinear Elliptic Equations
Yamabe Equation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We study the multiplicity of positive solutions of a Brezis–Nirenberg-type problem on a region of the three-dimensional sphere, which is invariant by the natural torus action. In the paper by Brezis and Peletier, the case in which the region is invariant by the (Formula presented.)-action is considered, namely, when the region is a spherical cap. We prove that the number of positive solutions increases as the parameter of the equation tends to (Formula presented.), giving an answer to a particular case of an open problem proposed in the above referred paper.
Fil: Rey, Carolina Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
description We study the multiplicity of positive solutions of a Brezis–Nirenberg-type problem on a region of the three-dimensional sphere, which is invariant by the natural torus action. In the paper by Brezis and Peletier, the case in which the region is invariant by the (Formula presented.)-action is considered, namely, when the region is a spherical cap. We prove that the number of positive solutions increases as the parameter of the equation tends to (Formula presented.), giving an answer to a particular case of an open problem proposed in the above referred paper.
publishDate 2017
dc.date.none.fl_str_mv 2017-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/55504
Rey, Carolina Ana; Elliptic equations with critical exponent on a torus invariant region of S3; World Scientific; Communications In Contemporary Mathematics; 12-2017; 1-23
0219-1997
CONICET Digital
CONICET
url http://hdl.handle.net/11336/55504
identifier_str_mv Rey, Carolina Ana; Elliptic equations with critical exponent on a torus invariant region of S3; World Scientific; Communications In Contemporary Mathematics; 12-2017; 1-23
0219-1997
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0219199717501000
info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219199717501000
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv World Scientific
publisher.none.fl_str_mv World Scientific
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614068130807808
score 13.070432