Elliptic equations with critical exponent on a torus invariant region of S3
- Autores
- Rey, Carolina Ana
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the multiplicity of positive solutions of a Brezis–Nirenberg-type problem on a region of the three-dimensional sphere, which is invariant by the natural torus action. In the paper by Brezis and Peletier, the case in which the region is invariant by the (Formula presented.)-action is considered, namely, when the region is a spherical cap. We prove that the number of positive solutions increases as the parameter of the equation tends to (Formula presented.), giving an answer to a particular case of an open problem proposed in the above referred paper.
Fil: Rey, Carolina Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina - Materia
-
Brezis-Nirenberg Problem
Nonlinear Elliptic Equations
Yamabe Equation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/55504
Ver los metadatos del registro completo
id |
CONICETDig_406bff1e1a76090cd839e284df8c3c07 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/55504 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Elliptic equations with critical exponent on a torus invariant region of S3Rey, Carolina AnaBrezis-Nirenberg ProblemNonlinear Elliptic EquationsYamabe Equationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the multiplicity of positive solutions of a Brezis–Nirenberg-type problem on a region of the three-dimensional sphere, which is invariant by the natural torus action. In the paper by Brezis and Peletier, the case in which the region is invariant by the (Formula presented.)-action is considered, namely, when the region is a spherical cap. We prove that the number of positive solutions increases as the parameter of the equation tends to (Formula presented.), giving an answer to a particular case of an open problem proposed in the above referred paper.Fil: Rey, Carolina Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaWorld Scientific2017-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/55504Rey, Carolina Ana; Elliptic equations with critical exponent on a torus invariant region of S3; World Scientific; Communications In Contemporary Mathematics; 12-2017; 1-230219-1997CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0219199717501000info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219199717501000info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:14:15Zoai:ri.conicet.gov.ar:11336/55504instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:14:15.741CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Elliptic equations with critical exponent on a torus invariant region of S3 |
title |
Elliptic equations with critical exponent on a torus invariant region of S3 |
spellingShingle |
Elliptic equations with critical exponent on a torus invariant region of S3 Rey, Carolina Ana Brezis-Nirenberg Problem Nonlinear Elliptic Equations Yamabe Equation |
title_short |
Elliptic equations with critical exponent on a torus invariant region of S3 |
title_full |
Elliptic equations with critical exponent on a torus invariant region of S3 |
title_fullStr |
Elliptic equations with critical exponent on a torus invariant region of S3 |
title_full_unstemmed |
Elliptic equations with critical exponent on a torus invariant region of S3 |
title_sort |
Elliptic equations with critical exponent on a torus invariant region of S3 |
dc.creator.none.fl_str_mv |
Rey, Carolina Ana |
author |
Rey, Carolina Ana |
author_facet |
Rey, Carolina Ana |
author_role |
author |
dc.subject.none.fl_str_mv |
Brezis-Nirenberg Problem Nonlinear Elliptic Equations Yamabe Equation |
topic |
Brezis-Nirenberg Problem Nonlinear Elliptic Equations Yamabe Equation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the multiplicity of positive solutions of a Brezis–Nirenberg-type problem on a region of the three-dimensional sphere, which is invariant by the natural torus action. In the paper by Brezis and Peletier, the case in which the region is invariant by the (Formula presented.)-action is considered, namely, when the region is a spherical cap. We prove that the number of positive solutions increases as the parameter of the equation tends to (Formula presented.), giving an answer to a particular case of an open problem proposed in the above referred paper. Fil: Rey, Carolina Ana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina |
description |
We study the multiplicity of positive solutions of a Brezis–Nirenberg-type problem on a region of the three-dimensional sphere, which is invariant by the natural torus action. In the paper by Brezis and Peletier, the case in which the region is invariant by the (Formula presented.)-action is considered, namely, when the region is a spherical cap. We prove that the number of positive solutions increases as the parameter of the equation tends to (Formula presented.), giving an answer to a particular case of an open problem proposed in the above referred paper. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/55504 Rey, Carolina Ana; Elliptic equations with critical exponent on a torus invariant region of S3; World Scientific; Communications In Contemporary Mathematics; 12-2017; 1-23 0219-1997 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/55504 |
identifier_str_mv |
Rey, Carolina Ana; Elliptic equations with critical exponent on a torus invariant region of S3; World Scientific; Communications In Contemporary Mathematics; 12-2017; 1-23 0219-1997 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.worldscientific.com/doi/abs/10.1142/S0219199717501000 info:eu-repo/semantics/altIdentifier/doi/10.1142/S0219199717501000 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614068130807808 |
score |
13.070432 |