Isoparametric Functions and Solutions of Yamabe Type Equations on Manifolds with Boundary

Autores
Henry, Guillermo Sebastian; Zuccotti, Juan Rodrigo
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let (M, g) be a compact Riemannian manifold with non-empty boundary. Provided that f is an isoparametric function of (M, g), we prove existence results for positive solutions of the Yamabe equation that are constant along the level sets of f. If (M, g) has positive constant scalar curvature, minimal boundary and admits an isoparametric function we also prove multiplicity results for positive solutions of the Yamabe equation on (M x N, g + th) where (N, h) is any closed Riemannian manifold with positive constant scalar curvature.
Fil: Henry, Guillermo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Zuccotti, Juan Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
YAMABE EQUATION
ISOPARAMETRIC FUNCTIONS
MANIFOLDS WITH BOUNDARY
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/241616

id CONICETDig_fe2f55571cba1b07933d66ae24724ab1
oai_identifier_str oai:ri.conicet.gov.ar:11336/241616
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Isoparametric Functions and Solutions of Yamabe Type Equations on Manifolds with BoundaryHenry, Guillermo SebastianZuccotti, Juan RodrigoYAMABE EQUATIONISOPARAMETRIC FUNCTIONSMANIFOLDS WITH BOUNDARYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let (M, g) be a compact Riemannian manifold with non-empty boundary. Provided that f is an isoparametric function of (M, g), we prove existence results for positive solutions of the Yamabe equation that are constant along the level sets of f. If (M, g) has positive constant scalar curvature, minimal boundary and admits an isoparametric function we also prove multiplicity results for positive solutions of the Yamabe equation on (M x N, g + th) where (N, h) is any closed Riemannian manifold with positive constant scalar curvature.Fil: Henry, Guillermo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Zuccotti, Juan Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/241616Henry, Guillermo Sebastian; Zuccotti, Juan Rodrigo; Isoparametric Functions and Solutions of Yamabe Type Equations on Manifolds with Boundary; Springer; The Journal Of Geometric Analysis; 34; 6; 12-2023; 1-241050-69261559-002XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s12220-024-01632-7info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s12220-024-01632-7info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2211.15738info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:47:25Zoai:ri.conicet.gov.ar:11336/241616instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:47:25.911CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Isoparametric Functions and Solutions of Yamabe Type Equations on Manifolds with Boundary
title Isoparametric Functions and Solutions of Yamabe Type Equations on Manifolds with Boundary
spellingShingle Isoparametric Functions and Solutions of Yamabe Type Equations on Manifolds with Boundary
Henry, Guillermo Sebastian
YAMABE EQUATION
ISOPARAMETRIC FUNCTIONS
MANIFOLDS WITH BOUNDARY
title_short Isoparametric Functions and Solutions of Yamabe Type Equations on Manifolds with Boundary
title_full Isoparametric Functions and Solutions of Yamabe Type Equations on Manifolds with Boundary
title_fullStr Isoparametric Functions and Solutions of Yamabe Type Equations on Manifolds with Boundary
title_full_unstemmed Isoparametric Functions and Solutions of Yamabe Type Equations on Manifolds with Boundary
title_sort Isoparametric Functions and Solutions of Yamabe Type Equations on Manifolds with Boundary
dc.creator.none.fl_str_mv Henry, Guillermo Sebastian
Zuccotti, Juan Rodrigo
author Henry, Guillermo Sebastian
author_facet Henry, Guillermo Sebastian
Zuccotti, Juan Rodrigo
author_role author
author2 Zuccotti, Juan Rodrigo
author2_role author
dc.subject.none.fl_str_mv YAMABE EQUATION
ISOPARAMETRIC FUNCTIONS
MANIFOLDS WITH BOUNDARY
topic YAMABE EQUATION
ISOPARAMETRIC FUNCTIONS
MANIFOLDS WITH BOUNDARY
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let (M, g) be a compact Riemannian manifold with non-empty boundary. Provided that f is an isoparametric function of (M, g), we prove existence results for positive solutions of the Yamabe equation that are constant along the level sets of f. If (M, g) has positive constant scalar curvature, minimal boundary and admits an isoparametric function we also prove multiplicity results for positive solutions of the Yamabe equation on (M x N, g + th) where (N, h) is any closed Riemannian manifold with positive constant scalar curvature.
Fil: Henry, Guillermo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Zuccotti, Juan Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description Let (M, g) be a compact Riemannian manifold with non-empty boundary. Provided that f is an isoparametric function of (M, g), we prove existence results for positive solutions of the Yamabe equation that are constant along the level sets of f. If (M, g) has positive constant scalar curvature, minimal boundary and admits an isoparametric function we also prove multiplicity results for positive solutions of the Yamabe equation on (M x N, g + th) where (N, h) is any closed Riemannian manifold with positive constant scalar curvature.
publishDate 2023
dc.date.none.fl_str_mv 2023-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/241616
Henry, Guillermo Sebastian; Zuccotti, Juan Rodrigo; Isoparametric Functions and Solutions of Yamabe Type Equations on Manifolds with Boundary; Springer; The Journal Of Geometric Analysis; 34; 6; 12-2023; 1-24
1050-6926
1559-002X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/241616
identifier_str_mv Henry, Guillermo Sebastian; Zuccotti, Juan Rodrigo; Isoparametric Functions and Solutions of Yamabe Type Equations on Manifolds with Boundary; Springer; The Journal Of Geometric Analysis; 34; 6; 12-2023; 1-24
1050-6926
1559-002X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s12220-024-01632-7
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s12220-024-01632-7
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2211.15738
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614518327476224
score 13.070432