Isoparametric Functions and Solutions of Yamabe Type Equations on Manifolds with Boundary
- Autores
- Henry, Guillermo Sebastian; Zuccotti, Juan Rodrigo
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let (M, g) be a compact Riemannian manifold with non-empty boundary. Provided that f is an isoparametric function of (M, g), we prove existence results for positive solutions of the Yamabe equation that are constant along the level sets of f. If (M, g) has positive constant scalar curvature, minimal boundary and admits an isoparametric function we also prove multiplicity results for positive solutions of the Yamabe equation on (M x N, g + th) where (N, h) is any closed Riemannian manifold with positive constant scalar curvature.
Fil: Henry, Guillermo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Zuccotti, Juan Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
YAMABE EQUATION
ISOPARAMETRIC FUNCTIONS
MANIFOLDS WITH BOUNDARY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/241616
Ver los metadatos del registro completo
id |
CONICETDig_fe2f55571cba1b07933d66ae24724ab1 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/241616 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Isoparametric Functions and Solutions of Yamabe Type Equations on Manifolds with BoundaryHenry, Guillermo SebastianZuccotti, Juan RodrigoYAMABE EQUATIONISOPARAMETRIC FUNCTIONSMANIFOLDS WITH BOUNDARYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let (M, g) be a compact Riemannian manifold with non-empty boundary. Provided that f is an isoparametric function of (M, g), we prove existence results for positive solutions of the Yamabe equation that are constant along the level sets of f. If (M, g) has positive constant scalar curvature, minimal boundary and admits an isoparametric function we also prove multiplicity results for positive solutions of the Yamabe equation on (M x N, g + th) where (N, h) is any closed Riemannian manifold with positive constant scalar curvature.Fil: Henry, Guillermo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Zuccotti, Juan Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSpringer2023-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/241616Henry, Guillermo Sebastian; Zuccotti, Juan Rodrigo; Isoparametric Functions and Solutions of Yamabe Type Equations on Manifolds with Boundary; Springer; The Journal Of Geometric Analysis; 34; 6; 12-2023; 1-241050-69261559-002XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s12220-024-01632-7info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s12220-024-01632-7info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2211.15738info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:47:25Zoai:ri.conicet.gov.ar:11336/241616instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:47:25.911CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Isoparametric Functions and Solutions of Yamabe Type Equations on Manifolds with Boundary |
title |
Isoparametric Functions and Solutions of Yamabe Type Equations on Manifolds with Boundary |
spellingShingle |
Isoparametric Functions and Solutions of Yamabe Type Equations on Manifolds with Boundary Henry, Guillermo Sebastian YAMABE EQUATION ISOPARAMETRIC FUNCTIONS MANIFOLDS WITH BOUNDARY |
title_short |
Isoparametric Functions and Solutions of Yamabe Type Equations on Manifolds with Boundary |
title_full |
Isoparametric Functions and Solutions of Yamabe Type Equations on Manifolds with Boundary |
title_fullStr |
Isoparametric Functions and Solutions of Yamabe Type Equations on Manifolds with Boundary |
title_full_unstemmed |
Isoparametric Functions and Solutions of Yamabe Type Equations on Manifolds with Boundary |
title_sort |
Isoparametric Functions and Solutions of Yamabe Type Equations on Manifolds with Boundary |
dc.creator.none.fl_str_mv |
Henry, Guillermo Sebastian Zuccotti, Juan Rodrigo |
author |
Henry, Guillermo Sebastian |
author_facet |
Henry, Guillermo Sebastian Zuccotti, Juan Rodrigo |
author_role |
author |
author2 |
Zuccotti, Juan Rodrigo |
author2_role |
author |
dc.subject.none.fl_str_mv |
YAMABE EQUATION ISOPARAMETRIC FUNCTIONS MANIFOLDS WITH BOUNDARY |
topic |
YAMABE EQUATION ISOPARAMETRIC FUNCTIONS MANIFOLDS WITH BOUNDARY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let (M, g) be a compact Riemannian manifold with non-empty boundary. Provided that f is an isoparametric function of (M, g), we prove existence results for positive solutions of the Yamabe equation that are constant along the level sets of f. If (M, g) has positive constant scalar curvature, minimal boundary and admits an isoparametric function we also prove multiplicity results for positive solutions of the Yamabe equation on (M x N, g + th) where (N, h) is any closed Riemannian manifold with positive constant scalar curvature. Fil: Henry, Guillermo Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Zuccotti, Juan Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
Let (M, g) be a compact Riemannian manifold with non-empty boundary. Provided that f is an isoparametric function of (M, g), we prove existence results for positive solutions of the Yamabe equation that are constant along the level sets of f. If (M, g) has positive constant scalar curvature, minimal boundary and admits an isoparametric function we also prove multiplicity results for positive solutions of the Yamabe equation on (M x N, g + th) where (N, h) is any closed Riemannian manifold with positive constant scalar curvature. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/241616 Henry, Guillermo Sebastian; Zuccotti, Juan Rodrigo; Isoparametric Functions and Solutions of Yamabe Type Equations on Manifolds with Boundary; Springer; The Journal Of Geometric Analysis; 34; 6; 12-2023; 1-24 1050-6926 1559-002X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/241616 |
identifier_str_mv |
Henry, Guillermo Sebastian; Zuccotti, Juan Rodrigo; Isoparametric Functions and Solutions of Yamabe Type Equations on Manifolds with Boundary; Springer; The Journal Of Geometric Analysis; 34; 6; 12-2023; 1-24 1050-6926 1559-002X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s12220-024-01632-7 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s12220-024-01632-7 info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/2211.15738 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614518327476224 |
score |
13.070432 |