QSAR Modelling to Identify LRRK2 Inhibitors for Parkinson's Disease
- Autores
- Sebastián Pérez, Víctor; Martínez, María Jimena; Gil, Carmen; Campillo Martín, Nuria Eugenia; Martínez, Ana; Ponzoni, Ignacio
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Parkinson's disease is one of the most common neurodegenerative illnesses in older persons and the leucine-rich repeat kinase 2 (LRRK2) is an auspicious target for its pharmacological treatment. In this work, quantitative structure-activity relationship (QSAR) models for identification of putative inhibitors of LRRK2 protein are developed by using an in-house chemical library and several machine learning techniques. The methodology applied in this paper has two steps: first, alternative subsets of molecular descriptors useful for characterizing LRRK2 inhibitors are chosen by a multi-objective feature selection method; secondly, QSAR models are learned by using these subsets and three different strategies for supervised learning. The qualities of all these QSAR models are compared by classical metrics and the best models are discussed in statistical and physicochemical terms.
Fil: Sebastián Pérez, Víctor. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; España
Fil: Martínez, María Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina
Fil: Gil, Carmen. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; España
Fil: Campillo Martín, Nuria Eugenia. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; España
Fil: Martínez, Ana. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; España
Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina - Materia
-
CHEMINFORMATICS
LRRK2
MACHINE LEARNING
PARKINSON’S DISEASE
QSAR - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/117434
Ver los metadatos del registro completo
id |
CONICETDig_3f9a8ae7acf68d5225460679638cfcc9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/117434 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
QSAR Modelling to Identify LRRK2 Inhibitors for Parkinson's DiseaseSebastián Pérez, VíctorMartínez, María JimenaGil, CarmenCampillo Martín, Nuria EugeniaMartínez, AnaPonzoni, IgnacioCHEMINFORMATICSLRRK2MACHINE LEARNINGPARKINSON’S DISEASEQSARhttps://purl.org/becyt/ford/1.4https://purl.org/becyt/ford/1Parkinson's disease is one of the most common neurodegenerative illnesses in older persons and the leucine-rich repeat kinase 2 (LRRK2) is an auspicious target for its pharmacological treatment. In this work, quantitative structure-activity relationship (QSAR) models for identification of putative inhibitors of LRRK2 protein are developed by using an in-house chemical library and several machine learning techniques. The methodology applied in this paper has two steps: first, alternative subsets of molecular descriptors useful for characterizing LRRK2 inhibitors are chosen by a multi-objective feature selection method; secondly, QSAR models are learned by using these subsets and three different strategies for supervised learning. The qualities of all these QSAR models are compared by classical metrics and the best models are discussed in statistical and physicochemical terms.Fil: Sebastián Pérez, Víctor. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; EspañaFil: Martínez, María Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaFil: Gil, Carmen. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; EspañaFil: Campillo Martín, Nuria Eugenia. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; EspañaFil: Martínez, Ana. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; EspañaFil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; ArgentinaDe Gruyter2019-02-14info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/117434Sebastián Pérez, Víctor; Martínez, María Jimena; Gil, Carmen; Campillo Martín, Nuria Eugenia; Martínez, Ana; et al.; QSAR Modelling to Identify LRRK2 Inhibitors for Parkinson's Disease; De Gruyter; Journal of integrative bioinformatics; 16; 1; 14-2-2019; 1-8; 201800631613-4516CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/journals/jib/16/1/article-20180063.xmlinfo:eu-repo/semantics/altIdentifier/doi/10.1515/jib-2018-0063info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:17:36Zoai:ri.conicet.gov.ar:11336/117434instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:17:36.794CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
QSAR Modelling to Identify LRRK2 Inhibitors for Parkinson's Disease |
title |
QSAR Modelling to Identify LRRK2 Inhibitors for Parkinson's Disease |
spellingShingle |
QSAR Modelling to Identify LRRK2 Inhibitors for Parkinson's Disease Sebastián Pérez, Víctor CHEMINFORMATICS LRRK2 MACHINE LEARNING PARKINSON’S DISEASE QSAR |
title_short |
QSAR Modelling to Identify LRRK2 Inhibitors for Parkinson's Disease |
title_full |
QSAR Modelling to Identify LRRK2 Inhibitors for Parkinson's Disease |
title_fullStr |
QSAR Modelling to Identify LRRK2 Inhibitors for Parkinson's Disease |
title_full_unstemmed |
QSAR Modelling to Identify LRRK2 Inhibitors for Parkinson's Disease |
title_sort |
QSAR Modelling to Identify LRRK2 Inhibitors for Parkinson's Disease |
dc.creator.none.fl_str_mv |
Sebastián Pérez, Víctor Martínez, María Jimena Gil, Carmen Campillo Martín, Nuria Eugenia Martínez, Ana Ponzoni, Ignacio |
author |
Sebastián Pérez, Víctor |
author_facet |
Sebastián Pérez, Víctor Martínez, María Jimena Gil, Carmen Campillo Martín, Nuria Eugenia Martínez, Ana Ponzoni, Ignacio |
author_role |
author |
author2 |
Martínez, María Jimena Gil, Carmen Campillo Martín, Nuria Eugenia Martínez, Ana Ponzoni, Ignacio |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
CHEMINFORMATICS LRRK2 MACHINE LEARNING PARKINSON’S DISEASE QSAR |
topic |
CHEMINFORMATICS LRRK2 MACHINE LEARNING PARKINSON’S DISEASE QSAR |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.4 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Parkinson's disease is one of the most common neurodegenerative illnesses in older persons and the leucine-rich repeat kinase 2 (LRRK2) is an auspicious target for its pharmacological treatment. In this work, quantitative structure-activity relationship (QSAR) models for identification of putative inhibitors of LRRK2 protein are developed by using an in-house chemical library and several machine learning techniques. The methodology applied in this paper has two steps: first, alternative subsets of molecular descriptors useful for characterizing LRRK2 inhibitors are chosen by a multi-objective feature selection method; secondly, QSAR models are learned by using these subsets and three different strategies for supervised learning. The qualities of all these QSAR models are compared by classical metrics and the best models are discussed in statistical and physicochemical terms. Fil: Sebastián Pérez, Víctor. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; España Fil: Martínez, María Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina Fil: Gil, Carmen. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; España Fil: Campillo Martín, Nuria Eugenia. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; España Fil: Martínez, Ana. Consejo Superior de Investigaciones Científicas. Centro de Investigaciones Biológicas; España Fil: Ponzoni, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Ciencias e Ingeniería de la Computación. Universidad Nacional del Sur. Departamento de Ciencias e Ingeniería de la Computación. Instituto de Ciencias e Ingeniería de la Computación; Argentina |
description |
Parkinson's disease is one of the most common neurodegenerative illnesses in older persons and the leucine-rich repeat kinase 2 (LRRK2) is an auspicious target for its pharmacological treatment. In this work, quantitative structure-activity relationship (QSAR) models for identification of putative inhibitors of LRRK2 protein are developed by using an in-house chemical library and several machine learning techniques. The methodology applied in this paper has two steps: first, alternative subsets of molecular descriptors useful for characterizing LRRK2 inhibitors are chosen by a multi-objective feature selection method; secondly, QSAR models are learned by using these subsets and three different strategies for supervised learning. The qualities of all these QSAR models are compared by classical metrics and the best models are discussed in statistical and physicochemical terms. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-02-14 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/117434 Sebastián Pérez, Víctor; Martínez, María Jimena; Gil, Carmen; Campillo Martín, Nuria Eugenia; Martínez, Ana; et al.; QSAR Modelling to Identify LRRK2 Inhibitors for Parkinson's Disease; De Gruyter; Journal of integrative bioinformatics; 16; 1; 14-2-2019; 1-8; 20180063 1613-4516 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/117434 |
identifier_str_mv |
Sebastián Pérez, Víctor; Martínez, María Jimena; Gil, Carmen; Campillo Martín, Nuria Eugenia; Martínez, Ana; et al.; QSAR Modelling to Identify LRRK2 Inhibitors for Parkinson's Disease; De Gruyter; Journal of integrative bioinformatics; 16; 1; 14-2-2019; 1-8; 20180063 1613-4516 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/view/journals/jib/16/1/article-20180063.xml info:eu-repo/semantics/altIdentifier/doi/10.1515/jib-2018-0063 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083325240803328 |
score |
13.22299 |