A statistical tool for a hydrometeorological forecast in the lower La Plata Basin
- Autores
- Meis, Melanie; Llano, Maria Paula; Rodríguez, Daniela
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Extreme discharge events in the La Plata Basin need to be prevented. Simple approaches to the forecast problem such as SARIMA models usually predict average values correctly but fail to anticipate extreme events. As an approach to this problem, we used copula methods to model the distribution of the NIÑO 3.4 index and river streamflow pair. We used this to build a six-months forecast for streamflow 95% percentile using observed index values. We added this forecast as an exogenous variable in a SARIMAX model to predict discharge. Given that NIÑO events are usually correlated with extreme discharge events, we expected this model to improve the SARIMA model in predicting extreme events. When comparing both models, we effectively found that SARIMAX model is better than a SARIMA model both for 6- and 12-month discharge forecasts in periods when an El Niño event occurs, while it retains the same performance level when evaluated on all the span of the time series. This model emerges as a lightweight and easily implementable option for decision makers to anticipate extreme events and reduce the negative impacts that they generate.
Fil: Meis, Melanie. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina
Fil: Llano, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina
Fil: Rodríguez, Daniela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina - Materia
-
ENSO
DISCHARGE
EXTREME EVENTS
COPULA METHODS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/162685
Ver los metadatos del registro completo
id |
CONICETDig_961c77ba804b7065c18ae19ceb58fbaf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/162685 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A statistical tool for a hydrometeorological forecast in the lower La Plata BasinMeis, MelanieLlano, Maria PaulaRodríguez, DanielaENSODISCHARGEEXTREME EVENTSCOPULA METHODShttps://purl.org/becyt/ford/1.5https://purl.org/becyt/ford/1Extreme discharge events in the La Plata Basin need to be prevented. Simple approaches to the forecast problem such as SARIMA models usually predict average values correctly but fail to anticipate extreme events. As an approach to this problem, we used copula methods to model the distribution of the NIÑO 3.4 index and river streamflow pair. We used this to build a six-months forecast for streamflow 95% percentile using observed index values. We added this forecast as an exogenous variable in a SARIMAX model to predict discharge. Given that NIÑO events are usually correlated with extreme discharge events, we expected this model to improve the SARIMA model in predicting extreme events. When comparing both models, we effectively found that SARIMAX model is better than a SARIMA model both for 6- and 12-month discharge forecasts in periods when an El Niño event occurs, while it retains the same performance level when evaluated on all the span of the time series. This model emerges as a lightweight and easily implementable option for decision makers to anticipate extreme events and reduce the negative impacts that they generate.Fil: Meis, Melanie. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; ArgentinaFil: Llano, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; ArgentinaFil: Rodríguez, Daniela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; ArgentinaTaylor & Francis2022-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/162685Meis, Melanie; Llano, Maria Paula; Rodríguez, Daniela; A statistical tool for a hydrometeorological forecast in the lower La Plata Basin; Taylor & Francis; International Journal of River Basin Management; 2022; 5-2022; 1-391571-51241814-2060CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/15715124.2022.2079657info:eu-repo/semantics/altIdentifier/doi/10.1080/15715124.2022.2079657info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:01:58Zoai:ri.conicet.gov.ar:11336/162685instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:01:59.06CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A statistical tool for a hydrometeorological forecast in the lower La Plata Basin |
title |
A statistical tool for a hydrometeorological forecast in the lower La Plata Basin |
spellingShingle |
A statistical tool for a hydrometeorological forecast in the lower La Plata Basin Meis, Melanie ENSO DISCHARGE EXTREME EVENTS COPULA METHODS |
title_short |
A statistical tool for a hydrometeorological forecast in the lower La Plata Basin |
title_full |
A statistical tool for a hydrometeorological forecast in the lower La Plata Basin |
title_fullStr |
A statistical tool for a hydrometeorological forecast in the lower La Plata Basin |
title_full_unstemmed |
A statistical tool for a hydrometeorological forecast in the lower La Plata Basin |
title_sort |
A statistical tool for a hydrometeorological forecast in the lower La Plata Basin |
dc.creator.none.fl_str_mv |
Meis, Melanie Llano, Maria Paula Rodríguez, Daniela |
author |
Meis, Melanie |
author_facet |
Meis, Melanie Llano, Maria Paula Rodríguez, Daniela |
author_role |
author |
author2 |
Llano, Maria Paula Rodríguez, Daniela |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ENSO DISCHARGE EXTREME EVENTS COPULA METHODS |
topic |
ENSO DISCHARGE EXTREME EVENTS COPULA METHODS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.5 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Extreme discharge events in the La Plata Basin need to be prevented. Simple approaches to the forecast problem such as SARIMA models usually predict average values correctly but fail to anticipate extreme events. As an approach to this problem, we used copula methods to model the distribution of the NIÑO 3.4 index and river streamflow pair. We used this to build a six-months forecast for streamflow 95% percentile using observed index values. We added this forecast as an exogenous variable in a SARIMAX model to predict discharge. Given that NIÑO events are usually correlated with extreme discharge events, we expected this model to improve the SARIMA model in predicting extreme events. When comparing both models, we effectively found that SARIMAX model is better than a SARIMA model both for 6- and 12-month discharge forecasts in periods when an El Niño event occurs, while it retains the same performance level when evaluated on all the span of the time series. This model emerges as a lightweight and easily implementable option for decision makers to anticipate extreme events and reduce the negative impacts that they generate. Fil: Meis, Melanie. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la Atmósfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la Atmósfera; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina Fil: Llano, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Ciencias de la Atmósfera y los Océanos; Argentina Fil: Rodríguez, Daniela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina |
description |
Extreme discharge events in the La Plata Basin need to be prevented. Simple approaches to the forecast problem such as SARIMA models usually predict average values correctly but fail to anticipate extreme events. As an approach to this problem, we used copula methods to model the distribution of the NIÑO 3.4 index and river streamflow pair. We used this to build a six-months forecast for streamflow 95% percentile using observed index values. We added this forecast as an exogenous variable in a SARIMAX model to predict discharge. Given that NIÑO events are usually correlated with extreme discharge events, we expected this model to improve the SARIMA model in predicting extreme events. When comparing both models, we effectively found that SARIMAX model is better than a SARIMA model both for 6- and 12-month discharge forecasts in periods when an El Niño event occurs, while it retains the same performance level when evaluated on all the span of the time series. This model emerges as a lightweight and easily implementable option for decision makers to anticipate extreme events and reduce the negative impacts that they generate. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/162685 Meis, Melanie; Llano, Maria Paula; Rodríguez, Daniela; A statistical tool for a hydrometeorological forecast in the lower La Plata Basin; Taylor & Francis; International Journal of River Basin Management; 2022; 5-2022; 1-39 1571-5124 1814-2060 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/162685 |
identifier_str_mv |
Meis, Melanie; Llano, Maria Paula; Rodríguez, Daniela; A statistical tool for a hydrometeorological forecast in the lower La Plata Basin; Taylor & Francis; International Journal of River Basin Management; 2022; 5-2022; 1-39 1571-5124 1814-2060 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/abs/10.1080/15715124.2022.2079657 info:eu-repo/semantics/altIdentifier/doi/10.1080/15715124.2022.2079657 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269727947227136 |
score |
13.13397 |