Learning from Incomplete Features by Simultaneous Training of Neural Networks and Sparse Coding
- Autores
- Caiafa, César Federico; Wang, Ziyao; Sole Casals, Jordi; Zhao, Qibin
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this paper, the problem of training a classifier on a dataset with incomplete features is addressed. We assume that different subsets of features (random or structured) are available at each data instance. This situation typically occurs in the applications when not all the features are collected for every data sample. A new supervised learning method is developed to train a general classifier, such as a logistic regression or a deep neural network, using only a subset of features per sample, while assuming sparse representations of data vectors on an unknown dictionary. Sufficient conditions are identified, such that, if it is possible to train a classifier on incomplete observations so that their reconstructions are well separated by a hyperplane, then the same classifier also correctly separates the original (unobserved) data samples. Extensive simulation results on synthetic and well-known datasets are presented that validate our theoretical findings and demonstrate the effectiveness of the proposed method compared to traditional data imputation approaches and one state-of-the-art algorithm.
Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina
Fil: Wang, Ziyao. South East University; China
Fil: Sole Casals, Jordi. University of Vic; España
Fil: Zhao, Qibin. Center for Advanced Intelligence Project; Japón
IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2021
New York
Estados Unidos
IEEE - Materia
-
Supervised learning
Missing data
Deep learning
Sparse Coding - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/139273
Ver los metadatos del registro completo
id |
CONICETDig_3df31e005616413a4a3a745347734c4c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/139273 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Learning from Incomplete Features by Simultaneous Training of Neural Networks and Sparse CodingCaiafa, César FedericoWang, ZiyaoSole Casals, JordiZhao, QibinSupervised learningMissing dataDeep learningSparse Codinghttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1In this paper, the problem of training a classifier on a dataset with incomplete features is addressed. We assume that different subsets of features (random or structured) are available at each data instance. This situation typically occurs in the applications when not all the features are collected for every data sample. A new supervised learning method is developed to train a general classifier, such as a logistic regression or a deep neural network, using only a subset of features per sample, while assuming sparse representations of data vectors on an unknown dictionary. Sufficient conditions are identified, such that, if it is possible to train a classifier on incomplete observations so that their reconstructions are well separated by a hyperplane, then the same classifier also correctly separates the original (unobserved) data samples. Extensive simulation results on synthetic and well-known datasets are presented that validate our theoretical findings and demonstrate the effectiveness of the proposed method compared to traditional data imputation approaches and one state-of-the-art algorithm.Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; ArgentinaFil: Wang, Ziyao. South East University; ChinaFil: Sole Casals, Jordi. University of Vic; EspañaFil: Zhao, Qibin. Center for Advanced Intelligence Project; JapónIEEE Computer Society Conference on Computer Vision and Pattern Recognition 2021New YorkEstados UnidosIEEEIEEE2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectConferenciaBookhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/139273Learning from Incomplete Features by Simultaneous Training of Neural Networks and Sparse Coding; IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2021; New York; Estados Unidos; 2021; 1-11CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://l2id.github.io/index.htmlinfo:eu-repo/semantics/altIdentifier/url/https://l2id.github.io/L2ID@CVPR2021_Accepted_paper_list.htmlinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2011.14047Internacionalinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:02:01Zoai:ri.conicet.gov.ar:11336/139273instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:02:01.992CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Learning from Incomplete Features by Simultaneous Training of Neural Networks and Sparse Coding |
title |
Learning from Incomplete Features by Simultaneous Training of Neural Networks and Sparse Coding |
spellingShingle |
Learning from Incomplete Features by Simultaneous Training of Neural Networks and Sparse Coding Caiafa, César Federico Supervised learning Missing data Deep learning Sparse Coding |
title_short |
Learning from Incomplete Features by Simultaneous Training of Neural Networks and Sparse Coding |
title_full |
Learning from Incomplete Features by Simultaneous Training of Neural Networks and Sparse Coding |
title_fullStr |
Learning from Incomplete Features by Simultaneous Training of Neural Networks and Sparse Coding |
title_full_unstemmed |
Learning from Incomplete Features by Simultaneous Training of Neural Networks and Sparse Coding |
title_sort |
Learning from Incomplete Features by Simultaneous Training of Neural Networks and Sparse Coding |
dc.creator.none.fl_str_mv |
Caiafa, César Federico Wang, Ziyao Sole Casals, Jordi Zhao, Qibin |
author |
Caiafa, César Federico |
author_facet |
Caiafa, César Federico Wang, Ziyao Sole Casals, Jordi Zhao, Qibin |
author_role |
author |
author2 |
Wang, Ziyao Sole Casals, Jordi Zhao, Qibin |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Supervised learning Missing data Deep learning Sparse Coding |
topic |
Supervised learning Missing data Deep learning Sparse Coding |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, the problem of training a classifier on a dataset with incomplete features is addressed. We assume that different subsets of features (random or structured) are available at each data instance. This situation typically occurs in the applications when not all the features are collected for every data sample. A new supervised learning method is developed to train a general classifier, such as a logistic regression or a deep neural network, using only a subset of features per sample, while assuming sparse representations of data vectors on an unknown dictionary. Sufficient conditions are identified, such that, if it is possible to train a classifier on incomplete observations so that their reconstructions are well separated by a hyperplane, then the same classifier also correctly separates the original (unobserved) data samples. Extensive simulation results on synthetic and well-known datasets are presented that validate our theoretical findings and demonstrate the effectiveness of the proposed method compared to traditional data imputation approaches and one state-of-the-art algorithm. Fil: Caiafa, César Federico. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina Fil: Wang, Ziyao. South East University; China Fil: Sole Casals, Jordi. University of Vic; España Fil: Zhao, Qibin. Center for Advanced Intelligence Project; Japón IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2021 New York Estados Unidos IEEE |
description |
In this paper, the problem of training a classifier on a dataset with incomplete features is addressed. We assume that different subsets of features (random or structured) are available at each data instance. This situation typically occurs in the applications when not all the features are collected for every data sample. A new supervised learning method is developed to train a general classifier, such as a logistic regression or a deep neural network, using only a subset of features per sample, while assuming sparse representations of data vectors on an unknown dictionary. Sufficient conditions are identified, such that, if it is possible to train a classifier on incomplete observations so that their reconstructions are well separated by a hyperplane, then the same classifier also correctly separates the original (unobserved) data samples. Extensive simulation results on synthetic and well-known datasets are presented that validate our theoretical findings and demonstrate the effectiveness of the proposed method compared to traditional data imputation approaches and one state-of-the-art algorithm. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/publishedVersion info:eu-repo/semantics/conferenceObject Conferencia Book http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
status_str |
publishedVersion |
format |
conferenceObject |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/139273 Learning from Incomplete Features by Simultaneous Training of Neural Networks and Sparse Coding; IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2021; New York; Estados Unidos; 2021; 1-11 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/139273 |
identifier_str_mv |
Learning from Incomplete Features by Simultaneous Training of Neural Networks and Sparse Coding; IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2021; New York; Estados Unidos; 2021; 1-11 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://l2id.github.io/index.html info:eu-repo/semantics/altIdentifier/url/https://l2id.github.io/L2ID@CVPR2021_Accepted_paper_list.html info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2011.14047 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.coverage.none.fl_str_mv |
Internacional |
dc.publisher.none.fl_str_mv |
IEEE |
publisher.none.fl_str_mv |
IEEE |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613819944402944 |
score |
13.070432 |