Semantic analysis on faces using deep neural networks
- Autores
- Pellejero, Nicolas Federico; Grinblat, Guillermo Luis; Uzal, Lucas César
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- En este trabajo se aborda el problema de reconocimiento y clasificación de Expresiones Faciales a partir de video. Actualmente existen excelentes resultados enfocados en entornos controlados, donde se encuentran expresiones faciales artificiales. En cambio, queda mucho por mejorar cuando se trata de entornos no controlados, en los cuales las variaciones de iluminación, ángulo a la cámara, encuadre del rostro, hacen que la poca cantidad de datos etiquetados disponibles sea un impedimento a la hora de entrenar modelos de aprendizaje automatizado. Para atacar esta dificultad se utilizó de forma innovadora la técnica Generative Adversarial Networks, que permite utilizar un gran cúmulo de imágenes no etiquetadas con un estilo de entrenamiento semi supervisado.
In this paper we address the problem of automatic emotion recognition and classification through video. Nowadays there are excellent results focused on lab-made datasets, with posed facial expressions. On the other hand there is room for a lot of improvement in the case of `in the wild' datasets, where light, face angle to the camera, etc. are taken into account. In these cases it could be very harmful to work with a small dataset. Currently, there are not big enough datasets of adequately labeled faces for the task.\\ We use Generative Adversarial Networks in order to train models in a semi-supervised fashion, generating realistic face images in the process, allowing the exploitation of a big cumulus of unlabeled face images.
Fil: Pellejero, Nicolas F.. Universidad Nacional de Rosario; Argentina
Fil: Grinblat, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina
Fil: Uzal, Lucas César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina - Materia
-
DEEP
EMOTION
LEARNING
RECOGNITION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/95795
Ver los metadatos del registro completo
id |
CONICETDig_07ca836cad94a8b392ca9b94107778e4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/95795 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Semantic analysis on faces using deep neural networksPellejero, Nicolas FedericoGrinblat, Guillermo LuisUzal, Lucas CésarDEEPEMOTIONLEARNINGRECOGNITIONhttps://purl.org/becyt/ford/1.2https://purl.org/becyt/ford/1En este trabajo se aborda el problema de reconocimiento y clasificación de Expresiones Faciales a partir de video. Actualmente existen excelentes resultados enfocados en entornos controlados, donde se encuentran expresiones faciales artificiales. En cambio, queda mucho por mejorar cuando se trata de entornos no controlados, en los cuales las variaciones de iluminación, ángulo a la cámara, encuadre del rostro, hacen que la poca cantidad de datos etiquetados disponibles sea un impedimento a la hora de entrenar modelos de aprendizaje automatizado. Para atacar esta dificultad se utilizó de forma innovadora la técnica Generative Adversarial Networks, que permite utilizar un gran cúmulo de imágenes no etiquetadas con un estilo de entrenamiento semi supervisado.In this paper we address the problem of automatic emotion recognition and classification through video. Nowadays there are excellent results focused on lab-made datasets, with posed facial expressions. On the other hand there is room for a lot of improvement in the case of `in the wild' datasets, where light, face angle to the camera, etc. are taken into account. In these cases it could be very harmful to work with a small dataset. Currently, there are not big enough datasets of adequately labeled faces for the task.\\ We use Generative Adversarial Networks in order to train models in a semi-supervised fashion, generating realistic face images in the process, allowing the exploitation of a big cumulus of unlabeled face images.Fil: Pellejero, Nicolas F.. Universidad Nacional de Rosario; ArgentinaFil: Grinblat, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaFil: Uzal, Lucas César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; ArgentinaAsociación Española de Inteligencia Artificial2018-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/95795Pellejero, Nicolas Federico; Grinblat, Guillermo Luis; Uzal, Lucas César; Semantic analysis on faces using deep neural networks; Asociación Española de Inteligencia Artificial; Inteligencia Artificial; 21; 61; 3-2018; 14-291137-36011988-3064CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://journal.iberamia.org/index.php/intartif/article/view/127info:eu-repo/semantics/altIdentifier/doi/10.4114/intartif.vol21iss61pp14-29info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:10Zoai:ri.conicet.gov.ar:11336/95795instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:10.453CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Semantic analysis on faces using deep neural networks |
title |
Semantic analysis on faces using deep neural networks |
spellingShingle |
Semantic analysis on faces using deep neural networks Pellejero, Nicolas Federico DEEP EMOTION LEARNING RECOGNITION |
title_short |
Semantic analysis on faces using deep neural networks |
title_full |
Semantic analysis on faces using deep neural networks |
title_fullStr |
Semantic analysis on faces using deep neural networks |
title_full_unstemmed |
Semantic analysis on faces using deep neural networks |
title_sort |
Semantic analysis on faces using deep neural networks |
dc.creator.none.fl_str_mv |
Pellejero, Nicolas Federico Grinblat, Guillermo Luis Uzal, Lucas César |
author |
Pellejero, Nicolas Federico |
author_facet |
Pellejero, Nicolas Federico Grinblat, Guillermo Luis Uzal, Lucas César |
author_role |
author |
author2 |
Grinblat, Guillermo Luis Uzal, Lucas César |
author2_role |
author author |
dc.subject.none.fl_str_mv |
DEEP EMOTION LEARNING RECOGNITION |
topic |
DEEP EMOTION LEARNING RECOGNITION |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.2 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
En este trabajo se aborda el problema de reconocimiento y clasificación de Expresiones Faciales a partir de video. Actualmente existen excelentes resultados enfocados en entornos controlados, donde se encuentran expresiones faciales artificiales. En cambio, queda mucho por mejorar cuando se trata de entornos no controlados, en los cuales las variaciones de iluminación, ángulo a la cámara, encuadre del rostro, hacen que la poca cantidad de datos etiquetados disponibles sea un impedimento a la hora de entrenar modelos de aprendizaje automatizado. Para atacar esta dificultad se utilizó de forma innovadora la técnica Generative Adversarial Networks, que permite utilizar un gran cúmulo de imágenes no etiquetadas con un estilo de entrenamiento semi supervisado. In this paper we address the problem of automatic emotion recognition and classification through video. Nowadays there are excellent results focused on lab-made datasets, with posed facial expressions. On the other hand there is room for a lot of improvement in the case of `in the wild' datasets, where light, face angle to the camera, etc. are taken into account. In these cases it could be very harmful to work with a small dataset. Currently, there are not big enough datasets of adequately labeled faces for the task.\\ We use Generative Adversarial Networks in order to train models in a semi-supervised fashion, generating realistic face images in the process, allowing the exploitation of a big cumulus of unlabeled face images. Fil: Pellejero, Nicolas F.. Universidad Nacional de Rosario; Argentina Fil: Grinblat, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina Fil: Uzal, Lucas César. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas. Universidad Nacional de Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas; Argentina |
description |
En este trabajo se aborda el problema de reconocimiento y clasificación de Expresiones Faciales a partir de video. Actualmente existen excelentes resultados enfocados en entornos controlados, donde se encuentran expresiones faciales artificiales. En cambio, queda mucho por mejorar cuando se trata de entornos no controlados, en los cuales las variaciones de iluminación, ángulo a la cámara, encuadre del rostro, hacen que la poca cantidad de datos etiquetados disponibles sea un impedimento a la hora de entrenar modelos de aprendizaje automatizado. Para atacar esta dificultad se utilizó de forma innovadora la técnica Generative Adversarial Networks, que permite utilizar un gran cúmulo de imágenes no etiquetadas con un estilo de entrenamiento semi supervisado. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/95795 Pellejero, Nicolas Federico; Grinblat, Guillermo Luis; Uzal, Lucas César; Semantic analysis on faces using deep neural networks; Asociación Española de Inteligencia Artificial; Inteligencia Artificial; 21; 61; 3-2018; 14-29 1137-3601 1988-3064 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/95795 |
identifier_str_mv |
Pellejero, Nicolas Federico; Grinblat, Guillermo Luis; Uzal, Lucas César; Semantic analysis on faces using deep neural networks; Asociación Española de Inteligencia Artificial; Inteligencia Artificial; 21; 61; 3-2018; 14-29 1137-3601 1988-3064 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://journal.iberamia.org/index.php/intartif/article/view/127 info:eu-repo/semantics/altIdentifier/doi/10.4114/intartif.vol21iss61pp14-29 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Asociación Española de Inteligencia Artificial |
publisher.none.fl_str_mv |
Asociación Española de Inteligencia Artificial |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613664982695936 |
score |
13.070432 |