Trivial central extensions of Lie bialgebras

Autores
Farinati, Marco Andrés; Jancsa, Alejandra Patricia
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
From a Lie algebra g satisfying Z(g)=0 and Λ2(g)g=0 (in particular, for g semisimple) we describe explicitly all Lie bialgebra structures on extensions of the form L=g×K{double-struck} in terms of Lie bialgebra structures on g (not necessarily factorizable nor quasi-triangular) and its biderivations, for any field K of characteristic different form 2, 3. If moreover, [g,g]=g, then we describe also all Lie bialgebra structures on extensions L=g×K{double-struck}n. In interesting cases we characterize the Lie algebra of biderivations. © 2013 Elsevier Inc.
Fil: Farinati, Marco Andrés. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Jancsa, Alejandra Patricia. Universidad de Buenos Aires; Argentina
Materia
Derivations
Extensions
Lie Bialgebras
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/66919

id CONICETDig_3d7c0939789f855307e891212bd06d57
oai_identifier_str oai:ri.conicet.gov.ar:11336/66919
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Trivial central extensions of Lie bialgebrasFarinati, Marco AndrésJancsa, Alejandra PatriciaDerivationsExtensionsLie Bialgebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1From a Lie algebra g satisfying Z(g)=0 and Λ2(g)g=0 (in particular, for g semisimple) we describe explicitly all Lie bialgebra structures on extensions of the form L=g×K{double-struck} in terms of Lie bialgebra structures on g (not necessarily factorizable nor quasi-triangular) and its biderivations, for any field K of characteristic different form 2, 3. If moreover, [g,g]=g, then we describe also all Lie bialgebra structures on extensions L=g×K{double-struck}n. In interesting cases we characterize the Lie algebra of biderivations. © 2013 Elsevier Inc.Fil: Farinati, Marco Andrés. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Jancsa, Alejandra Patricia. Universidad de Buenos Aires; ArgentinaAcademic Press Inc Elsevier Science2013-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/66919Farinati, Marco Andrés; Jancsa, Alejandra Patricia; Trivial central extensions of Lie bialgebras; Academic Press Inc Elsevier Science; Journal of Algebra; 390; 9-2013; 56-760021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2013.05.011info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:35:33Zoai:ri.conicet.gov.ar:11336/66919instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:35:34.048CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Trivial central extensions of Lie bialgebras
title Trivial central extensions of Lie bialgebras
spellingShingle Trivial central extensions of Lie bialgebras
Farinati, Marco Andrés
Derivations
Extensions
Lie Bialgebras
title_short Trivial central extensions of Lie bialgebras
title_full Trivial central extensions of Lie bialgebras
title_fullStr Trivial central extensions of Lie bialgebras
title_full_unstemmed Trivial central extensions of Lie bialgebras
title_sort Trivial central extensions of Lie bialgebras
dc.creator.none.fl_str_mv Farinati, Marco Andrés
Jancsa, Alejandra Patricia
author Farinati, Marco Andrés
author_facet Farinati, Marco Andrés
Jancsa, Alejandra Patricia
author_role author
author2 Jancsa, Alejandra Patricia
author2_role author
dc.subject.none.fl_str_mv Derivations
Extensions
Lie Bialgebras
topic Derivations
Extensions
Lie Bialgebras
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv From a Lie algebra g satisfying Z(g)=0 and Λ2(g)g=0 (in particular, for g semisimple) we describe explicitly all Lie bialgebra structures on extensions of the form L=g×K{double-struck} in terms of Lie bialgebra structures on g (not necessarily factorizable nor quasi-triangular) and its biderivations, for any field K of characteristic different form 2, 3. If moreover, [g,g]=g, then we describe also all Lie bialgebra structures on extensions L=g×K{double-struck}n. In interesting cases we characterize the Lie algebra of biderivations. © 2013 Elsevier Inc.
Fil: Farinati, Marco Andrés. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Jancsa, Alejandra Patricia. Universidad de Buenos Aires; Argentina
description From a Lie algebra g satisfying Z(g)=0 and Λ2(g)g=0 (in particular, for g semisimple) we describe explicitly all Lie bialgebra structures on extensions of the form L=g×K{double-struck} in terms of Lie bialgebra structures on g (not necessarily factorizable nor quasi-triangular) and its biderivations, for any field K of characteristic different form 2, 3. If moreover, [g,g]=g, then we describe also all Lie bialgebra structures on extensions L=g×K{double-struck}n. In interesting cases we characterize the Lie algebra of biderivations. © 2013 Elsevier Inc.
publishDate 2013
dc.date.none.fl_str_mv 2013-09
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/66919
Farinati, Marco Andrés; Jancsa, Alejandra Patricia; Trivial central extensions of Lie bialgebras; Academic Press Inc Elsevier Science; Journal of Algebra; 390; 9-2013; 56-76
0021-8693
CONICET Digital
CONICET
url http://hdl.handle.net/11336/66919
identifier_str_mv Farinati, Marco Andrés; Jancsa, Alejandra Patricia; Trivial central extensions of Lie bialgebras; Academic Press Inc Elsevier Science; Journal of Algebra; 390; 9-2013; 56-76
0021-8693
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2013.05.011
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613108234977280
score 13.070432