Trivial central extensions of Lie bialgebras
- Autores
- Farinati, M.A.; Jancsa, A.P.
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- From a Lie algebra g satisfying Z(g)=0 and Λ2(g)g=0 (in particular, for g semisimple) we describe explicitly all Lie bialgebra structures on extensions of the form L=g×K{double-struck} in terms of Lie bialgebra structures on g (not necessarily factorizable nor quasi-triangular) and its biderivations, for any field K of characteristic different form 2, 3. If moreover, [g,g]=g, then we describe also all Lie bialgebra structures on extensions L=g×K{double-struck}n. In interesting cases we characterize the Lie algebra of biderivations. © 2013 Elsevier Inc.
Fil:Farinati, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Algebra 2013;390:56-76
- Materia
-
Derivations
Extensions
Lie bialgebras - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
.jpg)
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00218693_v390_n_p56_Farinati
Ver los metadatos del registro completo
| id |
BDUBAFCEN_b7eab53ef7289aa82e3575a5345c3779 |
|---|---|
| oai_identifier_str |
paperaa:paper_00218693_v390_n_p56_Farinati |
| network_acronym_str |
BDUBAFCEN |
| repository_id_str |
1896 |
| network_name_str |
Biblioteca Digital (UBA-FCEN) |
| spelling |
Trivial central extensions of Lie bialgebrasFarinati, M.A.Jancsa, A.P.DerivationsExtensionsLie bialgebrasFrom a Lie algebra g satisfying Z(g)=0 and Λ2(g)g=0 (in particular, for g semisimple) we describe explicitly all Lie bialgebra structures on extensions of the form L=g×K{double-struck} in terms of Lie bialgebra structures on g (not necessarily factorizable nor quasi-triangular) and its biderivations, for any field K of characteristic different form 2, 3. If moreover, [g,g]=g, then we describe also all Lie bialgebra structures on extensions L=g×K{double-struck}n. In interesting cases we characterize the Lie algebra of biderivations. © 2013 Elsevier Inc.Fil:Farinati, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2013info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00218693_v390_n_p56_FarinatiJ. Algebra 2013;390:56-76reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-11-06T09:39:50Zpaperaa:paper_00218693_v390_n_p56_FarinatiInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-11-06 09:39:53.169Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
| dc.title.none.fl_str_mv |
Trivial central extensions of Lie bialgebras |
| title |
Trivial central extensions of Lie bialgebras |
| spellingShingle |
Trivial central extensions of Lie bialgebras Farinati, M.A. Derivations Extensions Lie bialgebras |
| title_short |
Trivial central extensions of Lie bialgebras |
| title_full |
Trivial central extensions of Lie bialgebras |
| title_fullStr |
Trivial central extensions of Lie bialgebras |
| title_full_unstemmed |
Trivial central extensions of Lie bialgebras |
| title_sort |
Trivial central extensions of Lie bialgebras |
| dc.creator.none.fl_str_mv |
Farinati, M.A. Jancsa, A.P. |
| author |
Farinati, M.A. |
| author_facet |
Farinati, M.A. Jancsa, A.P. |
| author_role |
author |
| author2 |
Jancsa, A.P. |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
Derivations Extensions Lie bialgebras |
| topic |
Derivations Extensions Lie bialgebras |
| dc.description.none.fl_txt_mv |
From a Lie algebra g satisfying Z(g)=0 and Λ2(g)g=0 (in particular, for g semisimple) we describe explicitly all Lie bialgebra structures on extensions of the form L=g×K{double-struck} in terms of Lie bialgebra structures on g (not necessarily factorizable nor quasi-triangular) and its biderivations, for any field K of characteristic different form 2, 3. If moreover, [g,g]=g, then we describe also all Lie bialgebra structures on extensions L=g×K{double-struck}n. In interesting cases we characterize the Lie algebra of biderivations. © 2013 Elsevier Inc. Fil:Farinati, M.A. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
| description |
From a Lie algebra g satisfying Z(g)=0 and Λ2(g)g=0 (in particular, for g semisimple) we describe explicitly all Lie bialgebra structures on extensions of the form L=g×K{double-struck} in terms of Lie bialgebra structures on g (not necessarily factorizable nor quasi-triangular) and its biderivations, for any field K of characteristic different form 2, 3. If moreover, [g,g]=g, then we describe also all Lie bialgebra structures on extensions L=g×K{double-struck}n. In interesting cases we characterize the Lie algebra of biderivations. © 2013 Elsevier Inc. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00218693_v390_n_p56_Farinati |
| url |
http://hdl.handle.net/20.500.12110/paper_00218693_v390_n_p56_Farinati |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
J. Algebra 2013;390:56-76 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
| reponame_str |
Biblioteca Digital (UBA-FCEN) |
| collection |
Biblioteca Digital (UBA-FCEN) |
| instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| instacron_str |
UBA-FCEN |
| institution |
UBA-FCEN |
| repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
| repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
| _version_ |
1848046096339697664 |
| score |
13.087074 |