Non-Precious Electrodes for Practical Alkaline Water Electrolysis
- Autores
- Colli, Alejandro Nicolás; Girault, Hubert; Battistel, Alberto
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Water electrolysis is a promising approach to hydrogen production from renewable energy sources. Alkaline water electrolyzers allow using non-noble and low cost materials. An analysis of common assumptions and experimental conditions (low concentrations, low temperature, low current densities and short-term experiments) found in the literature is reported. The steps to estimate the reaction overpotentials for hydrogen and oxygen reaction are reported and discussed. The results of some of the most investigated electrocatalysts, namely from the iron group elements (iron, nickel and cobalt) and chromium are reported. Past findings and recent progress in the development of efficient anode and cathode materials appropriate for large-scale water electrolysis are presented. The experimental work is done involving the direct-current electrolysis of highly concentrated potassium hydroxide solutions at temperatures between 30 and 100°C which are closer to industrial applications than what usually found in literature. Stable cell components and a good performance was achieved using as a cathode Raney nickel and stainless steel 316L as an anode by means of a monopolar cell at 75°C which ran for one month at 300 mA cm?2. Finally, the proposed catalysts show a total kinetic overpotential of circa 550 mV at 75 °C and 1 A cm?2.
Fil: Colli, Alejandro Nicolás. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Programa de Electroquímica Aplicada e Ingeniería Electroquímica; Argentina
Fil: Girault, Hubert. Ecole Polytechnique Federale de Lausanne; Francia
Fil: Battistel, Alberto. Ecole Polytechnique Federale de Lausanne; Francia - Materia
-
ALKALINE WATER ELECTROLYSIS
RANEY-NI
STAINLESS STEEL 316
EQUILIBRIUM POTENTIAL
IR CORRECTION
WATER SPLITTING - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/104804
Ver los metadatos del registro completo
id |
CONICETDig_3d5a952e324f34e55ca63772b94e710e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/104804 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Non-Precious Electrodes for Practical Alkaline Water ElectrolysisColli, Alejandro NicolásGirault, HubertBattistel, AlbertoALKALINE WATER ELECTROLYSISRANEY-NISTAINLESS STEEL 316EQUILIBRIUM POTENTIALIR CORRECTIONWATER SPLITTINGhttps://purl.org/becyt/ford/2.4https://purl.org/becyt/ford/2Water electrolysis is a promising approach to hydrogen production from renewable energy sources. Alkaline water electrolyzers allow using non-noble and low cost materials. An analysis of common assumptions and experimental conditions (low concentrations, low temperature, low current densities and short-term experiments) found in the literature is reported. The steps to estimate the reaction overpotentials for hydrogen and oxygen reaction are reported and discussed. The results of some of the most investigated electrocatalysts, namely from the iron group elements (iron, nickel and cobalt) and chromium are reported. Past findings and recent progress in the development of efficient anode and cathode materials appropriate for large-scale water electrolysis are presented. The experimental work is done involving the direct-current electrolysis of highly concentrated potassium hydroxide solutions at temperatures between 30 and 100°C which are closer to industrial applications than what usually found in literature. Stable cell components and a good performance was achieved using as a cathode Raney nickel and stainless steel 316L as an anode by means of a monopolar cell at 75°C which ran for one month at 300 mA cm?2. Finally, the proposed catalysts show a total kinetic overpotential of circa 550 mV at 75 °C and 1 A cm?2.Fil: Colli, Alejandro Nicolás. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Programa de Electroquímica Aplicada e Ingeniería Electroquímica; ArgentinaFil: Girault, Hubert. Ecole Polytechnique Federale de Lausanne; FranciaFil: Battistel, Alberto. Ecole Polytechnique Federale de Lausanne; FranciaMDPI2019-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/104804Colli, Alejandro Nicolás; Girault, Hubert; Battistel, Alberto; Non-Precious Electrodes for Practical Alkaline Water Electrolysis; MDPI; Materials; 12; 8; 4-2019; 1336-13541996-1944CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1996-1944/12/8/1336info:eu-repo/semantics/altIdentifier/doi/10.3390/ma12081336info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:11:58Zoai:ri.conicet.gov.ar:11336/104804instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:11:58.926CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Non-Precious Electrodes for Practical Alkaline Water Electrolysis |
title |
Non-Precious Electrodes for Practical Alkaline Water Electrolysis |
spellingShingle |
Non-Precious Electrodes for Practical Alkaline Water Electrolysis Colli, Alejandro Nicolás ALKALINE WATER ELECTROLYSIS RANEY-NI STAINLESS STEEL 316 EQUILIBRIUM POTENTIAL IR CORRECTION WATER SPLITTING |
title_short |
Non-Precious Electrodes for Practical Alkaline Water Electrolysis |
title_full |
Non-Precious Electrodes for Practical Alkaline Water Electrolysis |
title_fullStr |
Non-Precious Electrodes for Practical Alkaline Water Electrolysis |
title_full_unstemmed |
Non-Precious Electrodes for Practical Alkaline Water Electrolysis |
title_sort |
Non-Precious Electrodes for Practical Alkaline Water Electrolysis |
dc.creator.none.fl_str_mv |
Colli, Alejandro Nicolás Girault, Hubert Battistel, Alberto |
author |
Colli, Alejandro Nicolás |
author_facet |
Colli, Alejandro Nicolás Girault, Hubert Battistel, Alberto |
author_role |
author |
author2 |
Girault, Hubert Battistel, Alberto |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ALKALINE WATER ELECTROLYSIS RANEY-NI STAINLESS STEEL 316 EQUILIBRIUM POTENTIAL IR CORRECTION WATER SPLITTING |
topic |
ALKALINE WATER ELECTROLYSIS RANEY-NI STAINLESS STEEL 316 EQUILIBRIUM POTENTIAL IR CORRECTION WATER SPLITTING |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.4 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Water electrolysis is a promising approach to hydrogen production from renewable energy sources. Alkaline water electrolyzers allow using non-noble and low cost materials. An analysis of common assumptions and experimental conditions (low concentrations, low temperature, low current densities and short-term experiments) found in the literature is reported. The steps to estimate the reaction overpotentials for hydrogen and oxygen reaction are reported and discussed. The results of some of the most investigated electrocatalysts, namely from the iron group elements (iron, nickel and cobalt) and chromium are reported. Past findings and recent progress in the development of efficient anode and cathode materials appropriate for large-scale water electrolysis are presented. The experimental work is done involving the direct-current electrolysis of highly concentrated potassium hydroxide solutions at temperatures between 30 and 100°C which are closer to industrial applications than what usually found in literature. Stable cell components and a good performance was achieved using as a cathode Raney nickel and stainless steel 316L as an anode by means of a monopolar cell at 75°C which ran for one month at 300 mA cm?2. Finally, the proposed catalysts show a total kinetic overpotential of circa 550 mV at 75 °C and 1 A cm?2. Fil: Colli, Alejandro Nicolás. Universidad Nacional del Litoral. Facultad de Ingeniería Química. Programa de Electroquímica Aplicada e Ingeniería Electroquímica; Argentina Fil: Girault, Hubert. Ecole Polytechnique Federale de Lausanne; Francia Fil: Battistel, Alberto. Ecole Polytechnique Federale de Lausanne; Francia |
description |
Water electrolysis is a promising approach to hydrogen production from renewable energy sources. Alkaline water electrolyzers allow using non-noble and low cost materials. An analysis of common assumptions and experimental conditions (low concentrations, low temperature, low current densities and short-term experiments) found in the literature is reported. The steps to estimate the reaction overpotentials for hydrogen and oxygen reaction are reported and discussed. The results of some of the most investigated electrocatalysts, namely from the iron group elements (iron, nickel and cobalt) and chromium are reported. Past findings and recent progress in the development of efficient anode and cathode materials appropriate for large-scale water electrolysis are presented. The experimental work is done involving the direct-current electrolysis of highly concentrated potassium hydroxide solutions at temperatures between 30 and 100°C which are closer to industrial applications than what usually found in literature. Stable cell components and a good performance was achieved using as a cathode Raney nickel and stainless steel 316L as an anode by means of a monopolar cell at 75°C which ran for one month at 300 mA cm?2. Finally, the proposed catalysts show a total kinetic overpotential of circa 550 mV at 75 °C and 1 A cm?2. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/104804 Colli, Alejandro Nicolás; Girault, Hubert; Battistel, Alberto; Non-Precious Electrodes for Practical Alkaline Water Electrolysis; MDPI; Materials; 12; 8; 4-2019; 1336-1354 1996-1944 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/104804 |
identifier_str_mv |
Colli, Alejandro Nicolás; Girault, Hubert; Battistel, Alberto; Non-Precious Electrodes for Practical Alkaline Water Electrolysis; MDPI; Materials; 12; 8; 4-2019; 1336-1354 1996-1944 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1996-1944/12/8/1336 info:eu-repo/semantics/altIdentifier/doi/10.3390/ma12081336 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
MDPI |
publisher.none.fl_str_mv |
MDPI |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842270179905503232 |
score |
13.13397 |