The structure of bivariate rational hypergeometric functions
- Autores
- Cattani, Eduardo; Dickenstein, Alicia Marcela; Rodriguez Villegas, Fernando
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We describe the structure of all codimension-2 lattice configurations A which admit a stable rational A-hypergeometric function, that is a rational function F all the partial derivatives of which are nonzero, and which is a solution of the A-hypergeometric system of partial differential equations defined by Gel′ fand, Kapranov, and Zelevinsky. We show, moreover, that all stable rational A-hypergeometric functions may be described by toric residues and apply our results to study the rationality of bivariate series the coefficients of which are quotients of factorials of linear forms.
Fil: Cattani, Eduardo. University Of Massachussets; Estados Unidos
Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rodriguez Villegas, Fernando. University of Texas at Austin; Estados Unidos - Materia
-
Hypergeometric Functions
Cayley Configurations
Algebraic Functions
Monodromy - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14917
Ver los metadatos del registro completo
id |
CONICETDig_3c42815102749af7a788a0da6c629e82 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14917 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The structure of bivariate rational hypergeometric functionsCattani, EduardoDickenstein, Alicia MarcelaRodriguez Villegas, FernandoHypergeometric FunctionsCayley ConfigurationsAlgebraic FunctionsMonodromyhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We describe the structure of all codimension-2 lattice configurations A which admit a stable rational A-hypergeometric function, that is a rational function F all the partial derivatives of which are nonzero, and which is a solution of the A-hypergeometric system of partial differential equations defined by Gel′ fand, Kapranov, and Zelevinsky. We show, moreover, that all stable rational A-hypergeometric functions may be described by toric residues and apply our results to study the rationality of bivariate series the coefficients of which are quotients of factorials of linear forms.Fil: Cattani, Eduardo. University Of Massachussets; Estados UnidosFil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Rodriguez Villegas, Fernando. University of Texas at Austin; Estados UnidosOxford University Press2011-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14917Cattani, Eduardo; Dickenstein, Alicia Marcela; Rodriguez Villegas, Fernando; The structure of bivariate rational hypergeometric functions; Oxford University Press; International Mathematics Research Notices; 2011; 11; 10-2011; 2496-25331073-7928enginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-abstract/2011/11/2496/658731/The-Structure-of-Bivariate-Rational-Hypergeometricinfo:eu-repo/semantics/altIdentifier/doi/10.1093/imrn/rnq168info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:47Zoai:ri.conicet.gov.ar:11336/14917instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:47.753CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The structure of bivariate rational hypergeometric functions |
title |
The structure of bivariate rational hypergeometric functions |
spellingShingle |
The structure of bivariate rational hypergeometric functions Cattani, Eduardo Hypergeometric Functions Cayley Configurations Algebraic Functions Monodromy |
title_short |
The structure of bivariate rational hypergeometric functions |
title_full |
The structure of bivariate rational hypergeometric functions |
title_fullStr |
The structure of bivariate rational hypergeometric functions |
title_full_unstemmed |
The structure of bivariate rational hypergeometric functions |
title_sort |
The structure of bivariate rational hypergeometric functions |
dc.creator.none.fl_str_mv |
Cattani, Eduardo Dickenstein, Alicia Marcela Rodriguez Villegas, Fernando |
author |
Cattani, Eduardo |
author_facet |
Cattani, Eduardo Dickenstein, Alicia Marcela Rodriguez Villegas, Fernando |
author_role |
author |
author2 |
Dickenstein, Alicia Marcela Rodriguez Villegas, Fernando |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Hypergeometric Functions Cayley Configurations Algebraic Functions Monodromy |
topic |
Hypergeometric Functions Cayley Configurations Algebraic Functions Monodromy |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We describe the structure of all codimension-2 lattice configurations A which admit a stable rational A-hypergeometric function, that is a rational function F all the partial derivatives of which are nonzero, and which is a solution of the A-hypergeometric system of partial differential equations defined by Gel′ fand, Kapranov, and Zelevinsky. We show, moreover, that all stable rational A-hypergeometric functions may be described by toric residues and apply our results to study the rationality of bivariate series the coefficients of which are quotients of factorials of linear forms. Fil: Cattani, Eduardo. University Of Massachussets; Estados Unidos Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Rodriguez Villegas, Fernando. University of Texas at Austin; Estados Unidos |
description |
We describe the structure of all codimension-2 lattice configurations A which admit a stable rational A-hypergeometric function, that is a rational function F all the partial derivatives of which are nonzero, and which is a solution of the A-hypergeometric system of partial differential equations defined by Gel′ fand, Kapranov, and Zelevinsky. We show, moreover, that all stable rational A-hypergeometric functions may be described by toric residues and apply our results to study the rationality of bivariate series the coefficients of which are quotients of factorials of linear forms. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14917 Cattani, Eduardo; Dickenstein, Alicia Marcela; Rodriguez Villegas, Fernando; The structure of bivariate rational hypergeometric functions; Oxford University Press; International Mathematics Research Notices; 2011; 11; 10-2011; 2496-2533 1073-7928 |
url |
http://hdl.handle.net/11336/14917 |
identifier_str_mv |
Cattani, Eduardo; Dickenstein, Alicia Marcela; Rodriguez Villegas, Fernando; The structure of bivariate rational hypergeometric functions; Oxford University Press; International Mathematics Research Notices; 2011; 11; 10-2011; 2496-2533 1073-7928 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-abstract/2011/11/2496/658731/The-Structure-of-Bivariate-Rational-Hypergeometric info:eu-repo/semantics/altIdentifier/doi/10.1093/imrn/rnq168 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Oxford University Press |
publisher.none.fl_str_mv |
Oxford University Press |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268940033589248 |
score |
13.13397 |