The structure of bivariate rational hypergeometric functions

Autores
Cattani, Eduardo; Dickenstein, Alicia Marcela; Rodriguez Villegas, Fernando
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We describe the structure of all codimension-2 lattice configurations A which admit a stable rational A-hypergeometric function, that is a rational function F all the partial derivatives of which are nonzero, and which is a solution of the A-hypergeometric system of partial differential equations defined by Gel′ fand, Kapranov, and Zelevinsky. We show, moreover, that all stable rational A-hypergeometric functions may be described by toric residues and apply our results to study the rationality of bivariate series the coefficients of which are quotients of factorials of linear forms.
Fil: Cattani, Eduardo. University Of Massachussets; Estados Unidos
Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rodriguez Villegas, Fernando. University of Texas at Austin; Estados Unidos
Materia
Hypergeometric Functions
Cayley Configurations
Algebraic Functions
Monodromy
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/14917

id CONICETDig_3c42815102749af7a788a0da6c629e82
oai_identifier_str oai:ri.conicet.gov.ar:11336/14917
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The structure of bivariate rational hypergeometric functionsCattani, EduardoDickenstein, Alicia MarcelaRodriguez Villegas, FernandoHypergeometric FunctionsCayley ConfigurationsAlgebraic FunctionsMonodromyhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We describe the structure of all codimension-2 lattice configurations A which admit a stable rational A-hypergeometric function, that is a rational function F all the partial derivatives of which are nonzero, and which is a solution of the A-hypergeometric system of partial differential equations defined by Gel′ fand, Kapranov, and Zelevinsky. We show, moreover, that all stable rational A-hypergeometric functions may be described by toric residues and apply our results to study the rationality of bivariate series the coefficients of which are quotients of factorials of linear forms.Fil: Cattani, Eduardo. University Of Massachussets; Estados UnidosFil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Rodriguez Villegas, Fernando. University of Texas at Austin; Estados UnidosOxford University Press2011-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14917Cattani, Eduardo; Dickenstein, Alicia Marcela; Rodriguez Villegas, Fernando; The structure of bivariate rational hypergeometric functions; Oxford University Press; International Mathematics Research Notices; 2011; 11; 10-2011; 2496-25331073-7928enginfo:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-abstract/2011/11/2496/658731/The-Structure-of-Bivariate-Rational-Hypergeometricinfo:eu-repo/semantics/altIdentifier/doi/10.1093/imrn/rnq168info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:47Zoai:ri.conicet.gov.ar:11336/14917instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:47.753CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The structure of bivariate rational hypergeometric functions
title The structure of bivariate rational hypergeometric functions
spellingShingle The structure of bivariate rational hypergeometric functions
Cattani, Eduardo
Hypergeometric Functions
Cayley Configurations
Algebraic Functions
Monodromy
title_short The structure of bivariate rational hypergeometric functions
title_full The structure of bivariate rational hypergeometric functions
title_fullStr The structure of bivariate rational hypergeometric functions
title_full_unstemmed The structure of bivariate rational hypergeometric functions
title_sort The structure of bivariate rational hypergeometric functions
dc.creator.none.fl_str_mv Cattani, Eduardo
Dickenstein, Alicia Marcela
Rodriguez Villegas, Fernando
author Cattani, Eduardo
author_facet Cattani, Eduardo
Dickenstein, Alicia Marcela
Rodriguez Villegas, Fernando
author_role author
author2 Dickenstein, Alicia Marcela
Rodriguez Villegas, Fernando
author2_role author
author
dc.subject.none.fl_str_mv Hypergeometric Functions
Cayley Configurations
Algebraic Functions
Monodromy
topic Hypergeometric Functions
Cayley Configurations
Algebraic Functions
Monodromy
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We describe the structure of all codimension-2 lattice configurations A which admit a stable rational A-hypergeometric function, that is a rational function F all the partial derivatives of which are nonzero, and which is a solution of the A-hypergeometric system of partial differential equations defined by Gel′ fand, Kapranov, and Zelevinsky. We show, moreover, that all stable rational A-hypergeometric functions may be described by toric residues and apply our results to study the rationality of bivariate series the coefficients of which are quotients of factorials of linear forms.
Fil: Cattani, Eduardo. University Of Massachussets; Estados Unidos
Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Rodriguez Villegas, Fernando. University of Texas at Austin; Estados Unidos
description We describe the structure of all codimension-2 lattice configurations A which admit a stable rational A-hypergeometric function, that is a rational function F all the partial derivatives of which are nonzero, and which is a solution of the A-hypergeometric system of partial differential equations defined by Gel′ fand, Kapranov, and Zelevinsky. We show, moreover, that all stable rational A-hypergeometric functions may be described by toric residues and apply our results to study the rationality of bivariate series the coefficients of which are quotients of factorials of linear forms.
publishDate 2011
dc.date.none.fl_str_mv 2011-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/14917
Cattani, Eduardo; Dickenstein, Alicia Marcela; Rodriguez Villegas, Fernando; The structure of bivariate rational hypergeometric functions; Oxford University Press; International Mathematics Research Notices; 2011; 11; 10-2011; 2496-2533
1073-7928
url http://hdl.handle.net/11336/14917
identifier_str_mv Cattani, Eduardo; Dickenstein, Alicia Marcela; Rodriguez Villegas, Fernando; The structure of bivariate rational hypergeometric functions; Oxford University Press; International Mathematics Research Notices; 2011; 11; 10-2011; 2496-2533
1073-7928
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/imrn/article-abstract/2011/11/2496/658731/The-Structure-of-Bivariate-Rational-Hypergeometric
info:eu-repo/semantics/altIdentifier/doi/10.1093/imrn/rnq168
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Oxford University Press
publisher.none.fl_str_mv Oxford University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268940033589248
score 13.13397