Derivatives of any order of the hypergeometric function pFq(a1, ..., ap; b1, ..., bq; z) with respect to the parameters ai and bi
- Autores
- Ancarani, L.U.; Gasaneo, Gustavo
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The derivatives of any order of the general hypergeometric function pFq(a1.....ap; b1.....bq;z) with respect to the parameters a; or bj are expressed, in compact form, in terms of generalizations of multivariable Kampe de Feriet functions. To achieve this, use is made of Babister's solution to nonhomogeneous differential equations for pFq(a1.....ap; b1.....bq;z). An application to Hahn polynomials, which are 3F2 functions, is given as an illustration.
Fil: Ancarani, L.U.. Université Paul Verlaine-Metz; Francia
Fil: Gasaneo, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina. Universidad Nacional del Sur. Departamento de Física; Argentina - Materia
-
Hypergeometric Functions
Gauss Functions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/68503
Ver los metadatos del registro completo
id |
CONICETDig_0e6f588a78b7c46b10f2e905d66f8496 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/68503 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Derivatives of any order of the hypergeometric function pFq(a1, ..., ap; b1, ..., bq; z) with respect to the parameters ai and biAncarani, L.U.Gasaneo, GustavoHypergeometric FunctionsGauss Functionshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The derivatives of any order of the general hypergeometric function pFq(a1.....ap; b1.....bq;z) with respect to the parameters a; or bj are expressed, in compact form, in terms of generalizations of multivariable Kampe de Feriet functions. To achieve this, use is made of Babister's solution to nonhomogeneous differential equations for pFq(a1.....ap; b1.....bq;z). An application to Hahn polynomials, which are 3F2 functions, is given as an illustration.Fil: Ancarani, L.U.. Université Paul Verlaine-Metz; FranciaFil: Gasaneo, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina. Universidad Nacional del Sur. Departamento de Física; ArgentinaIOP Publishing2010-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/68503Ancarani, L.U.; Gasaneo, Gustavo; Derivatives of any order of the hypergeometric function pFq(a1, ..., ap; b1, ..., bq; z) with respect to the parameters ai and bi; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 43; 8; 2-2010; 1-111751-81131751-8121CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1751-8113/43/8/085210/metainfo:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/43/8/085210info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:14Zoai:ri.conicet.gov.ar:11336/68503instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:14.519CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Derivatives of any order of the hypergeometric function pFq(a1, ..., ap; b1, ..., bq; z) with respect to the parameters ai and bi |
title |
Derivatives of any order of the hypergeometric function pFq(a1, ..., ap; b1, ..., bq; z) with respect to the parameters ai and bi |
spellingShingle |
Derivatives of any order of the hypergeometric function pFq(a1, ..., ap; b1, ..., bq; z) with respect to the parameters ai and bi Ancarani, L.U. Hypergeometric Functions Gauss Functions |
title_short |
Derivatives of any order of the hypergeometric function pFq(a1, ..., ap; b1, ..., bq; z) with respect to the parameters ai and bi |
title_full |
Derivatives of any order of the hypergeometric function pFq(a1, ..., ap; b1, ..., bq; z) with respect to the parameters ai and bi |
title_fullStr |
Derivatives of any order of the hypergeometric function pFq(a1, ..., ap; b1, ..., bq; z) with respect to the parameters ai and bi |
title_full_unstemmed |
Derivatives of any order of the hypergeometric function pFq(a1, ..., ap; b1, ..., bq; z) with respect to the parameters ai and bi |
title_sort |
Derivatives of any order of the hypergeometric function pFq(a1, ..., ap; b1, ..., bq; z) with respect to the parameters ai and bi |
dc.creator.none.fl_str_mv |
Ancarani, L.U. Gasaneo, Gustavo |
author |
Ancarani, L.U. |
author_facet |
Ancarani, L.U. Gasaneo, Gustavo |
author_role |
author |
author2 |
Gasaneo, Gustavo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Hypergeometric Functions Gauss Functions |
topic |
Hypergeometric Functions Gauss Functions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The derivatives of any order of the general hypergeometric function pFq(a1.....ap; b1.....bq;z) with respect to the parameters a; or bj are expressed, in compact form, in terms of generalizations of multivariable Kampe de Feriet functions. To achieve this, use is made of Babister's solution to nonhomogeneous differential equations for pFq(a1.....ap; b1.....bq;z). An application to Hahn polynomials, which are 3F2 functions, is given as an illustration. Fil: Ancarani, L.U.. Université Paul Verlaine-Metz; Francia Fil: Gasaneo, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina. Universidad Nacional del Sur. Departamento de Física; Argentina |
description |
The derivatives of any order of the general hypergeometric function pFq(a1.....ap; b1.....bq;z) with respect to the parameters a; or bj are expressed, in compact form, in terms of generalizations of multivariable Kampe de Feriet functions. To achieve this, use is made of Babister's solution to nonhomogeneous differential equations for pFq(a1.....ap; b1.....bq;z). An application to Hahn polynomials, which are 3F2 functions, is given as an illustration. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/68503 Ancarani, L.U.; Gasaneo, Gustavo; Derivatives of any order of the hypergeometric function pFq(a1, ..., ap; b1, ..., bq; z) with respect to the parameters ai and bi; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 43; 8; 2-2010; 1-11 1751-8113 1751-8121 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/68503 |
identifier_str_mv |
Ancarani, L.U.; Gasaneo, Gustavo; Derivatives of any order of the hypergeometric function pFq(a1, ..., ap; b1, ..., bq; z) with respect to the parameters ai and bi; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 43; 8; 2-2010; 1-11 1751-8113 1751-8121 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://iopscience.iop.org/article/10.1088/1751-8113/43/8/085210/meta info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/43/8/085210 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268912248422400 |
score |
13.13397 |