Derivatives of Horn hypergeometric functions with respect to their parameters
- Autores
- Ancarani, L. U.; del Punta, Jessica Adriana; Gasaneo, Gustavo
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The derivatives of eight Horn hypergeometric functions [four Appell F1, F2, F3, and F4, and four (degenerate) confluent Φ1, Φ2, Ψ1, and Ξ1] with respect to their parameters are studied. The first derivatives are expressed, systematically, as triple infinite summations or, alternatively, as single summations of two-variable Kampé de Fériet functions. Taking advantage of previously established expressions for the derivative of the confluent or Gaussian hypergeometric functions, the generalization to the nth derivative of Horn's functions with respect to their parameters is rather straightforward in most cases; the results are expressed in terms of n + 2 infinite summations. Following a similar procedure, mixed derivatives are also treated. An illustration of the usefulness of the derivatives of F1, with respect to the first and third parameters, is given with the study of autoionization of atoms occurring as part of a post-collisional process. Their evaluation setting the Coulomb charge to zero provides the coefficients of a Born-like expansion of the interaction.
Fil: Ancarani, L. U.. Université de Lorraine; Francia
Fil: del Punta, Jessica Adriana. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina. Université de Lorraine; Francia
Fil: Gasaneo, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina - Materia
-
HORN HYPERGEOMETRIC FUNCTIONS
DERIVATIVES
PARAMETERS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/64180
Ver los metadatos del registro completo
id |
CONICETDig_102044e6b7cb8e58bb6dc898fa780fee |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/64180 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Derivatives of Horn hypergeometric functions with respect to their parametersAncarani, L. U.del Punta, Jessica AdrianaGasaneo, GustavoHORN HYPERGEOMETRIC FUNCTIONSDERIVATIVESPARAMETERShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The derivatives of eight Horn hypergeometric functions [four Appell F1, F2, F3, and F4, and four (degenerate) confluent Φ1, Φ2, Ψ1, and Ξ1] with respect to their parameters are studied. The first derivatives are expressed, systematically, as triple infinite summations or, alternatively, as single summations of two-variable Kampé de Fériet functions. Taking advantage of previously established expressions for the derivative of the confluent or Gaussian hypergeometric functions, the generalization to the nth derivative of Horn's functions with respect to their parameters is rather straightforward in most cases; the results are expressed in terms of n + 2 infinite summations. Following a similar procedure, mixed derivatives are also treated. An illustration of the usefulness of the derivatives of F1, with respect to the first and third parameters, is given with the study of autoionization of atoms occurring as part of a post-collisional process. Their evaluation setting the Coulomb charge to zero provides the coefficients of a Born-like expansion of the interaction.Fil: Ancarani, L. U.. Université de Lorraine; FranciaFil: del Punta, Jessica Adriana. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina. Université de Lorraine; FranciaFil: Gasaneo, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; ArgentinaAmerican Institute of Physics2017-07-24info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/64180Ancarani, L. U.; del Punta, Jessica Adriana; Gasaneo, Gustavo; Derivatives of Horn hypergeometric functions with respect to their parameters; American Institute of Physics; Journal of Mathematical Physics; 58; 7; 24-7-2017; 1-18; 0735040022-2488CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1063/1.4994059info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.4994059info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1712.07579info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:36Zoai:ri.conicet.gov.ar:11336/64180instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:36.345CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Derivatives of Horn hypergeometric functions with respect to their parameters |
title |
Derivatives of Horn hypergeometric functions with respect to their parameters |
spellingShingle |
Derivatives of Horn hypergeometric functions with respect to their parameters Ancarani, L. U. HORN HYPERGEOMETRIC FUNCTIONS DERIVATIVES PARAMETERS |
title_short |
Derivatives of Horn hypergeometric functions with respect to their parameters |
title_full |
Derivatives of Horn hypergeometric functions with respect to their parameters |
title_fullStr |
Derivatives of Horn hypergeometric functions with respect to their parameters |
title_full_unstemmed |
Derivatives of Horn hypergeometric functions with respect to their parameters |
title_sort |
Derivatives of Horn hypergeometric functions with respect to their parameters |
dc.creator.none.fl_str_mv |
Ancarani, L. U. del Punta, Jessica Adriana Gasaneo, Gustavo |
author |
Ancarani, L. U. |
author_facet |
Ancarani, L. U. del Punta, Jessica Adriana Gasaneo, Gustavo |
author_role |
author |
author2 |
del Punta, Jessica Adriana Gasaneo, Gustavo |
author2_role |
author author |
dc.subject.none.fl_str_mv |
HORN HYPERGEOMETRIC FUNCTIONS DERIVATIVES PARAMETERS |
topic |
HORN HYPERGEOMETRIC FUNCTIONS DERIVATIVES PARAMETERS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The derivatives of eight Horn hypergeometric functions [four Appell F1, F2, F3, and F4, and four (degenerate) confluent Φ1, Φ2, Ψ1, and Ξ1] with respect to their parameters are studied. The first derivatives are expressed, systematically, as triple infinite summations or, alternatively, as single summations of two-variable Kampé de Fériet functions. Taking advantage of previously established expressions for the derivative of the confluent or Gaussian hypergeometric functions, the generalization to the nth derivative of Horn's functions with respect to their parameters is rather straightforward in most cases; the results are expressed in terms of n + 2 infinite summations. Following a similar procedure, mixed derivatives are also treated. An illustration of the usefulness of the derivatives of F1, with respect to the first and third parameters, is given with the study of autoionization of atoms occurring as part of a post-collisional process. Their evaluation setting the Coulomb charge to zero provides the coefficients of a Born-like expansion of the interaction. Fil: Ancarani, L. U.. Université de Lorraine; Francia Fil: del Punta, Jessica Adriana. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina. Université de Lorraine; Francia Fil: Gasaneo, Gustavo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Física del Sur. Universidad Nacional del Sur. Departamento de Física. Instituto de Física del Sur; Argentina |
description |
The derivatives of eight Horn hypergeometric functions [four Appell F1, F2, F3, and F4, and four (degenerate) confluent Φ1, Φ2, Ψ1, and Ξ1] with respect to their parameters are studied. The first derivatives are expressed, systematically, as triple infinite summations or, alternatively, as single summations of two-variable Kampé de Fériet functions. Taking advantage of previously established expressions for the derivative of the confluent or Gaussian hypergeometric functions, the generalization to the nth derivative of Horn's functions with respect to their parameters is rather straightforward in most cases; the results are expressed in terms of n + 2 infinite summations. Following a similar procedure, mixed derivatives are also treated. An illustration of the usefulness of the derivatives of F1, with respect to the first and third parameters, is given with the study of autoionization of atoms occurring as part of a post-collisional process. Their evaluation setting the Coulomb charge to zero provides the coefficients of a Born-like expansion of the interaction. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-07-24 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/64180 Ancarani, L. U.; del Punta, Jessica Adriana; Gasaneo, Gustavo; Derivatives of Horn hypergeometric functions with respect to their parameters; American Institute of Physics; Journal of Mathematical Physics; 58; 7; 24-7-2017; 1-18; 073504 0022-2488 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/64180 |
identifier_str_mv |
Ancarani, L. U.; del Punta, Jessica Adriana; Gasaneo, Gustavo; Derivatives of Horn hypergeometric functions with respect to their parameters; American Institute of Physics; Journal of Mathematical Physics; 58; 7; 24-7-2017; 1-18; 073504 0022-2488 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1063/1.4994059 info:eu-repo/semantics/altIdentifier/url/https://aip.scitation.org/doi/10.1063/1.4994059 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1712.07579 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Institute of Physics |
publisher.none.fl_str_mv |
American Institute of Physics |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269295383412736 |
score |
13.13397 |