A combinatorial framework to quantify peak/pit asymmetries in complex dynamics

Autores
Hasson, Uri; Iacovacci, Jacopo; Davis, Ben; Flanagan, Ryan; Tagliazucchi, Enzo Rodolfo; Laufs, Helmut; Lacasa, Lucas
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We explore a combinatorial framework which efficiently quantifies the asymmetries between minima and maxima in local fluctuations of time series. We first showcase its performance by applying it to a battery of synthetic cases. We find rigorous results on some canonical dynamical models (stochastic processes with and without correlations, chaotic processes) complemented by extensive numerical simulations for a range of processes which indicate that the methodology correctly distinguishes different complex dynamics and outperforms state of the art metrics in several cases. Subsequently, we apply this methodology to real-world problems emerging across several disciplines including cases in neurobiology, finance and climate science. We conclude that differences between the statistics of local maxima and local minima in time series are highly informative of the complex underlying dynamics and a graph-theoretic extraction procedure allows to use these features for statistical learning purposes.
Fil: Hasson, Uri. University of Chicago; Estados Unidos. University of Trento; Italia
Fil: Iacovacci, Jacopo. The Francis Crick Institute; Reino Unido. Imperial College London; Reino Unido
Fil: Davis, Ben. University of Trento; Italia
Fil: Flanagan, Ryan. Queen Mary University of London; Reino Unido
Fil: Tagliazucchi, Enzo Rodolfo. Netherlands Institute for Neuroscience; Países Bajos
Fil: Laufs, Helmut. Goethe Universitat Frankfurt; Alemania. University Hospital Kiel; Alemania
Fil: Lacasa, Lucas. Queen Mary University of London; Reino Unido
Materia
NEUROIMAGING
STOCHASTIC PROCESSES
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/98655

id CONICETDig_39e87aef439eb723998d3cc37d44338b
oai_identifier_str oai:ri.conicet.gov.ar:11336/98655
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A combinatorial framework to quantify peak/pit asymmetries in complex dynamicsHasson, UriIacovacci, JacopoDavis, BenFlanagan, RyanTagliazucchi, Enzo RodolfoLaufs, HelmutLacasa, LucasNEUROIMAGINGSTOCHASTIC PROCESSEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1We explore a combinatorial framework which efficiently quantifies the asymmetries between minima and maxima in local fluctuations of time series. We first showcase its performance by applying it to a battery of synthetic cases. We find rigorous results on some canonical dynamical models (stochastic processes with and without correlations, chaotic processes) complemented by extensive numerical simulations for a range of processes which indicate that the methodology correctly distinguishes different complex dynamics and outperforms state of the art metrics in several cases. Subsequently, we apply this methodology to real-world problems emerging across several disciplines including cases in neurobiology, finance and climate science. We conclude that differences between the statistics of local maxima and local minima in time series are highly informative of the complex underlying dynamics and a graph-theoretic extraction procedure allows to use these features for statistical learning purposes.Fil: Hasson, Uri. University of Chicago; Estados Unidos. University of Trento; ItaliaFil: Iacovacci, Jacopo. The Francis Crick Institute; Reino Unido. Imperial College London; Reino UnidoFil: Davis, Ben. University of Trento; ItaliaFil: Flanagan, Ryan. Queen Mary University of London; Reino UnidoFil: Tagliazucchi, Enzo Rodolfo. Netherlands Institute for Neuroscience; Países BajosFil: Laufs, Helmut. Goethe Universitat Frankfurt; Alemania. University Hospital Kiel; AlemaniaFil: Lacasa, Lucas. Queen Mary University of London; Reino UnidoNature Publishing Group2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98655Hasson, Uri; Iacovacci, Jacopo; Davis, Ben; Flanagan, Ryan; Tagliazucchi, Enzo Rodolfo; et al.; A combinatorial framework to quantify peak/pit asymmetries in complex dynamics; Nature Publishing Group; Scientific Reports; 8; 1; 12-2018; 1-172045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-018-21785-0info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-018-21785-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:01:03Zoai:ri.conicet.gov.ar:11336/98655instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:01:04.159CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A combinatorial framework to quantify peak/pit asymmetries in complex dynamics
title A combinatorial framework to quantify peak/pit asymmetries in complex dynamics
spellingShingle A combinatorial framework to quantify peak/pit asymmetries in complex dynamics
Hasson, Uri
NEUROIMAGING
STOCHASTIC PROCESSES
title_short A combinatorial framework to quantify peak/pit asymmetries in complex dynamics
title_full A combinatorial framework to quantify peak/pit asymmetries in complex dynamics
title_fullStr A combinatorial framework to quantify peak/pit asymmetries in complex dynamics
title_full_unstemmed A combinatorial framework to quantify peak/pit asymmetries in complex dynamics
title_sort A combinatorial framework to quantify peak/pit asymmetries in complex dynamics
dc.creator.none.fl_str_mv Hasson, Uri
Iacovacci, Jacopo
Davis, Ben
Flanagan, Ryan
Tagliazucchi, Enzo Rodolfo
Laufs, Helmut
Lacasa, Lucas
author Hasson, Uri
author_facet Hasson, Uri
Iacovacci, Jacopo
Davis, Ben
Flanagan, Ryan
Tagliazucchi, Enzo Rodolfo
Laufs, Helmut
Lacasa, Lucas
author_role author
author2 Iacovacci, Jacopo
Davis, Ben
Flanagan, Ryan
Tagliazucchi, Enzo Rodolfo
Laufs, Helmut
Lacasa, Lucas
author2_role author
author
author
author
author
author
dc.subject.none.fl_str_mv NEUROIMAGING
STOCHASTIC PROCESSES
topic NEUROIMAGING
STOCHASTIC PROCESSES
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
https://purl.org/becyt/ford/1.6
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We explore a combinatorial framework which efficiently quantifies the asymmetries between minima and maxima in local fluctuations of time series. We first showcase its performance by applying it to a battery of synthetic cases. We find rigorous results on some canonical dynamical models (stochastic processes with and without correlations, chaotic processes) complemented by extensive numerical simulations for a range of processes which indicate that the methodology correctly distinguishes different complex dynamics and outperforms state of the art metrics in several cases. Subsequently, we apply this methodology to real-world problems emerging across several disciplines including cases in neurobiology, finance and climate science. We conclude that differences between the statistics of local maxima and local minima in time series are highly informative of the complex underlying dynamics and a graph-theoretic extraction procedure allows to use these features for statistical learning purposes.
Fil: Hasson, Uri. University of Chicago; Estados Unidos. University of Trento; Italia
Fil: Iacovacci, Jacopo. The Francis Crick Institute; Reino Unido. Imperial College London; Reino Unido
Fil: Davis, Ben. University of Trento; Italia
Fil: Flanagan, Ryan. Queen Mary University of London; Reino Unido
Fil: Tagliazucchi, Enzo Rodolfo. Netherlands Institute for Neuroscience; Países Bajos
Fil: Laufs, Helmut. Goethe Universitat Frankfurt; Alemania. University Hospital Kiel; Alemania
Fil: Lacasa, Lucas. Queen Mary University of London; Reino Unido
description We explore a combinatorial framework which efficiently quantifies the asymmetries between minima and maxima in local fluctuations of time series. We first showcase its performance by applying it to a battery of synthetic cases. We find rigorous results on some canonical dynamical models (stochastic processes with and without correlations, chaotic processes) complemented by extensive numerical simulations for a range of processes which indicate that the methodology correctly distinguishes different complex dynamics and outperforms state of the art metrics in several cases. Subsequently, we apply this methodology to real-world problems emerging across several disciplines including cases in neurobiology, finance and climate science. We conclude that differences between the statistics of local maxima and local minima in time series are highly informative of the complex underlying dynamics and a graph-theoretic extraction procedure allows to use these features for statistical learning purposes.
publishDate 2018
dc.date.none.fl_str_mv 2018-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/98655
Hasson, Uri; Iacovacci, Jacopo; Davis, Ben; Flanagan, Ryan; Tagliazucchi, Enzo Rodolfo; et al.; A combinatorial framework to quantify peak/pit asymmetries in complex dynamics; Nature Publishing Group; Scientific Reports; 8; 1; 12-2018; 1-17
2045-2322
CONICET Digital
CONICET
url http://hdl.handle.net/11336/98655
identifier_str_mv Hasson, Uri; Iacovacci, Jacopo; Davis, Ben; Flanagan, Ryan; Tagliazucchi, Enzo Rodolfo; et al.; A combinatorial framework to quantify peak/pit asymmetries in complex dynamics; Nature Publishing Group; Scientific Reports; 8; 1; 12-2018; 1-17
2045-2322
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-018-21785-0
info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-018-21785-0
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Nature Publishing Group
publisher.none.fl_str_mv Nature Publishing Group
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1846083150510292992
score 13.22299