A combinatorial framework to quantify peak/pit asymmetries in complex dynamics
- Autores
- Hasson, Uri; Iacovacci, Jacopo; Davis, Ben; Flanagan, Ryan; Tagliazucchi, Enzo Rodolfo; Laufs, Helmut; Lacasa, Lucas
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We explore a combinatorial framework which efficiently quantifies the asymmetries between minima and maxima in local fluctuations of time series. We first showcase its performance by applying it to a battery of synthetic cases. We find rigorous results on some canonical dynamical models (stochastic processes with and without correlations, chaotic processes) complemented by extensive numerical simulations for a range of processes which indicate that the methodology correctly distinguishes different complex dynamics and outperforms state of the art metrics in several cases. Subsequently, we apply this methodology to real-world problems emerging across several disciplines including cases in neurobiology, finance and climate science. We conclude that differences between the statistics of local maxima and local minima in time series are highly informative of the complex underlying dynamics and a graph-theoretic extraction procedure allows to use these features for statistical learning purposes.
Fil: Hasson, Uri. University of Chicago; Estados Unidos. University of Trento; Italia
Fil: Iacovacci, Jacopo. The Francis Crick Institute; Reino Unido. Imperial College London; Reino Unido
Fil: Davis, Ben. University of Trento; Italia
Fil: Flanagan, Ryan. Queen Mary University of London; Reino Unido
Fil: Tagliazucchi, Enzo Rodolfo. Netherlands Institute for Neuroscience; Países Bajos
Fil: Laufs, Helmut. Goethe Universitat Frankfurt; Alemania. University Hospital Kiel; Alemania
Fil: Lacasa, Lucas. Queen Mary University of London; Reino Unido - Materia
-
NEUROIMAGING
STOCHASTIC PROCESSES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98655
Ver los metadatos del registro completo
id |
CONICETDig_39e87aef439eb723998d3cc37d44338b |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98655 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A combinatorial framework to quantify peak/pit asymmetries in complex dynamicsHasson, UriIacovacci, JacopoDavis, BenFlanagan, RyanTagliazucchi, Enzo RodolfoLaufs, HelmutLacasa, LucasNEUROIMAGINGSTOCHASTIC PROCESSEShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.6https://purl.org/becyt/ford/1We explore a combinatorial framework which efficiently quantifies the asymmetries between minima and maxima in local fluctuations of time series. We first showcase its performance by applying it to a battery of synthetic cases. We find rigorous results on some canonical dynamical models (stochastic processes with and without correlations, chaotic processes) complemented by extensive numerical simulations for a range of processes which indicate that the methodology correctly distinguishes different complex dynamics and outperforms state of the art metrics in several cases. Subsequently, we apply this methodology to real-world problems emerging across several disciplines including cases in neurobiology, finance and climate science. We conclude that differences between the statistics of local maxima and local minima in time series are highly informative of the complex underlying dynamics and a graph-theoretic extraction procedure allows to use these features for statistical learning purposes.Fil: Hasson, Uri. University of Chicago; Estados Unidos. University of Trento; ItaliaFil: Iacovacci, Jacopo. The Francis Crick Institute; Reino Unido. Imperial College London; Reino UnidoFil: Davis, Ben. University of Trento; ItaliaFil: Flanagan, Ryan. Queen Mary University of London; Reino UnidoFil: Tagliazucchi, Enzo Rodolfo. Netherlands Institute for Neuroscience; Países BajosFil: Laufs, Helmut. Goethe Universitat Frankfurt; Alemania. University Hospital Kiel; AlemaniaFil: Lacasa, Lucas. Queen Mary University of London; Reino UnidoNature Publishing Group2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98655Hasson, Uri; Iacovacci, Jacopo; Davis, Ben; Flanagan, Ryan; Tagliazucchi, Enzo Rodolfo; et al.; A combinatorial framework to quantify peak/pit asymmetries in complex dynamics; Nature Publishing Group; Scientific Reports; 8; 1; 12-2018; 1-172045-2322CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-018-21785-0info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-018-21785-0info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:01:03Zoai:ri.conicet.gov.ar:11336/98655instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:01:04.159CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A combinatorial framework to quantify peak/pit asymmetries in complex dynamics |
title |
A combinatorial framework to quantify peak/pit asymmetries in complex dynamics |
spellingShingle |
A combinatorial framework to quantify peak/pit asymmetries in complex dynamics Hasson, Uri NEUROIMAGING STOCHASTIC PROCESSES |
title_short |
A combinatorial framework to quantify peak/pit asymmetries in complex dynamics |
title_full |
A combinatorial framework to quantify peak/pit asymmetries in complex dynamics |
title_fullStr |
A combinatorial framework to quantify peak/pit asymmetries in complex dynamics |
title_full_unstemmed |
A combinatorial framework to quantify peak/pit asymmetries in complex dynamics |
title_sort |
A combinatorial framework to quantify peak/pit asymmetries in complex dynamics |
dc.creator.none.fl_str_mv |
Hasson, Uri Iacovacci, Jacopo Davis, Ben Flanagan, Ryan Tagliazucchi, Enzo Rodolfo Laufs, Helmut Lacasa, Lucas |
author |
Hasson, Uri |
author_facet |
Hasson, Uri Iacovacci, Jacopo Davis, Ben Flanagan, Ryan Tagliazucchi, Enzo Rodolfo Laufs, Helmut Lacasa, Lucas |
author_role |
author |
author2 |
Iacovacci, Jacopo Davis, Ben Flanagan, Ryan Tagliazucchi, Enzo Rodolfo Laufs, Helmut Lacasa, Lucas |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
NEUROIMAGING STOCHASTIC PROCESSES |
topic |
NEUROIMAGING STOCHASTIC PROCESSES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.6 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We explore a combinatorial framework which efficiently quantifies the asymmetries between minima and maxima in local fluctuations of time series. We first showcase its performance by applying it to a battery of synthetic cases. We find rigorous results on some canonical dynamical models (stochastic processes with and without correlations, chaotic processes) complemented by extensive numerical simulations for a range of processes which indicate that the methodology correctly distinguishes different complex dynamics and outperforms state of the art metrics in several cases. Subsequently, we apply this methodology to real-world problems emerging across several disciplines including cases in neurobiology, finance and climate science. We conclude that differences between the statistics of local maxima and local minima in time series are highly informative of the complex underlying dynamics and a graph-theoretic extraction procedure allows to use these features for statistical learning purposes. Fil: Hasson, Uri. University of Chicago; Estados Unidos. University of Trento; Italia Fil: Iacovacci, Jacopo. The Francis Crick Institute; Reino Unido. Imperial College London; Reino Unido Fil: Davis, Ben. University of Trento; Italia Fil: Flanagan, Ryan. Queen Mary University of London; Reino Unido Fil: Tagliazucchi, Enzo Rodolfo. Netherlands Institute for Neuroscience; Países Bajos Fil: Laufs, Helmut. Goethe Universitat Frankfurt; Alemania. University Hospital Kiel; Alemania Fil: Lacasa, Lucas. Queen Mary University of London; Reino Unido |
description |
We explore a combinatorial framework which efficiently quantifies the asymmetries between minima and maxima in local fluctuations of time series. We first showcase its performance by applying it to a battery of synthetic cases. We find rigorous results on some canonical dynamical models (stochastic processes with and without correlations, chaotic processes) complemented by extensive numerical simulations for a range of processes which indicate that the methodology correctly distinguishes different complex dynamics and outperforms state of the art metrics in several cases. Subsequently, we apply this methodology to real-world problems emerging across several disciplines including cases in neurobiology, finance and climate science. We conclude that differences between the statistics of local maxima and local minima in time series are highly informative of the complex underlying dynamics and a graph-theoretic extraction procedure allows to use these features for statistical learning purposes. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98655 Hasson, Uri; Iacovacci, Jacopo; Davis, Ben; Flanagan, Ryan; Tagliazucchi, Enzo Rodolfo; et al.; A combinatorial framework to quantify peak/pit asymmetries in complex dynamics; Nature Publishing Group; Scientific Reports; 8; 1; 12-2018; 1-17 2045-2322 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/98655 |
identifier_str_mv |
Hasson, Uri; Iacovacci, Jacopo; Davis, Ben; Flanagan, Ryan; Tagliazucchi, Enzo Rodolfo; et al.; A combinatorial framework to quantify peak/pit asymmetries in complex dynamics; Nature Publishing Group; Scientific Reports; 8; 1; 12-2018; 1-17 2045-2322 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1038/s41598-018-21785-0 info:eu-repo/semantics/altIdentifier/url/https://www.nature.com/articles/s41598-018-21785-0 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Nature Publishing Group |
publisher.none.fl_str_mv |
Nature Publishing Group |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083150510292992 |
score |
13.22299 |