On the application of a diffusive memristor compact model to neuromorphic circuits
- Autores
- Ferri, Agustín Cisternas; Rapoport, Alan; Fierens, Pablo Ignacio; Patterson, Germán Agustín; Miranda, Enrique; Suñé, Jordi
- Año de publicación
- 2019
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Memristive devices have found application in both random access memory and neuromorphic circuits. In particular, it is known that their behavior resembles that of neuronal synapses. However, it is not simple to come by samples of memristors and adjusting their parameters to change their response requires a laborious fabrication process. Moreover, sample to sample variability makes experimentation with memristor-based synapses even harder. The usual alternatives are to either simulate or emulate the memristive systems under study. Both methodologies require the use of accurate modeling equations. In this paper, we present a diffusive compact model of memristive behavior that has already been experimentally validated. Furthermore, we implement an emulation architecture that enables us to freely explore the synapse-like characteristics of memristors. The main advantage of emulation over simulation is that the former allows us to work with real-world circuits. Our results can give some insight into the desirable characteristics of the memristors for neuromorphic applications.
Fil: Ferri, Agustín Cisternas. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Rapoport, Alan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina
Fil: Fierens, Pablo Ignacio. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Patterson, Germán Agustín. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Miranda, Enrique. Universitat Autònoma de Barcelona; España
Fil: Suñé, Jordi. Universitat Autònoma de Barcelona; España - Materia
-
COMPACT MODEL
EMULATOR
MEMRISTOR
NEUROMORPHIC
PAVLOV
STDP
SYNAPSE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/123160
Ver los metadatos del registro completo
id |
CONICETDig_3919c00ac6b6964266e7b5d339c62450 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/123160 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the application of a diffusive memristor compact model to neuromorphic circuitsFerri, Agustín CisternasRapoport, AlanFierens, Pablo IgnacioPatterson, Germán AgustínMiranda, EnriqueSuñé, JordiCOMPACT MODELEMULATORMEMRISTORNEUROMORPHICPAVLOVSTDPSYNAPSEhttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1https://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2Memristive devices have found application in both random access memory and neuromorphic circuits. In particular, it is known that their behavior resembles that of neuronal synapses. However, it is not simple to come by samples of memristors and adjusting their parameters to change their response requires a laborious fabrication process. Moreover, sample to sample variability makes experimentation with memristor-based synapses even harder. The usual alternatives are to either simulate or emulate the memristive systems under study. Both methodologies require the use of accurate modeling equations. In this paper, we present a diffusive compact model of memristive behavior that has already been experimentally validated. Furthermore, we implement an emulation architecture that enables us to freely explore the synapse-like characteristics of memristors. The main advantage of emulation over simulation is that the former allows us to work with real-world circuits. Our results can give some insight into the desirable characteristics of the memristors for neuromorphic applications.Fil: Ferri, Agustín Cisternas. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Rapoport, Alan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; ArgentinaFil: Fierens, Pablo Ignacio. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Patterson, Germán Agustín. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Miranda, Enrique. Universitat Autònoma de Barcelona; EspañaFil: Suñé, Jordi. Universitat Autònoma de Barcelona; EspañaMultidisciplinary Digital Publishing Institute2019-07-13info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/123160Ferri, Agustín Cisternas; Rapoport, Alan; Fierens, Pablo Ignacio; Patterson, Germán Agustín; Miranda, Enrique; et al.; On the application of a diffusive memristor compact model to neuromorphic circuits; Multidisciplinary Digital Publishing Institute; Materials; 12; 14; 13-7-2019; 1-181996-1944CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1996-1944/12/14/2260info:eu-repo/semantics/altIdentifier/doi/10.3390/ma12142260info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:26:51Zoai:ri.conicet.gov.ar:11336/123160instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:26:51.902CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the application of a diffusive memristor compact model to neuromorphic circuits |
title |
On the application of a diffusive memristor compact model to neuromorphic circuits |
spellingShingle |
On the application of a diffusive memristor compact model to neuromorphic circuits Ferri, Agustín Cisternas COMPACT MODEL EMULATOR MEMRISTOR NEUROMORPHIC PAVLOV STDP SYNAPSE |
title_short |
On the application of a diffusive memristor compact model to neuromorphic circuits |
title_full |
On the application of a diffusive memristor compact model to neuromorphic circuits |
title_fullStr |
On the application of a diffusive memristor compact model to neuromorphic circuits |
title_full_unstemmed |
On the application of a diffusive memristor compact model to neuromorphic circuits |
title_sort |
On the application of a diffusive memristor compact model to neuromorphic circuits |
dc.creator.none.fl_str_mv |
Ferri, Agustín Cisternas Rapoport, Alan Fierens, Pablo Ignacio Patterson, Germán Agustín Miranda, Enrique Suñé, Jordi |
author |
Ferri, Agustín Cisternas |
author_facet |
Ferri, Agustín Cisternas Rapoport, Alan Fierens, Pablo Ignacio Patterson, Germán Agustín Miranda, Enrique Suñé, Jordi |
author_role |
author |
author2 |
Rapoport, Alan Fierens, Pablo Ignacio Patterson, Germán Agustín Miranda, Enrique Suñé, Jordi |
author2_role |
author author author author author |
dc.subject.none.fl_str_mv |
COMPACT MODEL EMULATOR MEMRISTOR NEUROMORPHIC PAVLOV STDP SYNAPSE |
topic |
COMPACT MODEL EMULATOR MEMRISTOR NEUROMORPHIC PAVLOV STDP SYNAPSE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
Memristive devices have found application in both random access memory and neuromorphic circuits. In particular, it is known that their behavior resembles that of neuronal synapses. However, it is not simple to come by samples of memristors and adjusting their parameters to change their response requires a laborious fabrication process. Moreover, sample to sample variability makes experimentation with memristor-based synapses even harder. The usual alternatives are to either simulate or emulate the memristive systems under study. Both methodologies require the use of accurate modeling equations. In this paper, we present a diffusive compact model of memristive behavior that has already been experimentally validated. Furthermore, we implement an emulation architecture that enables us to freely explore the synapse-like characteristics of memristors. The main advantage of emulation over simulation is that the former allows us to work with real-world circuits. Our results can give some insight into the desirable characteristics of the memristors for neuromorphic applications. Fil: Ferri, Agustín Cisternas. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Rapoport, Alan. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Física; Argentina Fil: Fierens, Pablo Ignacio. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Patterson, Germán Agustín. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Miranda, Enrique. Universitat Autònoma de Barcelona; España Fil: Suñé, Jordi. Universitat Autònoma de Barcelona; España |
description |
Memristive devices have found application in both random access memory and neuromorphic circuits. In particular, it is known that their behavior resembles that of neuronal synapses. However, it is not simple to come by samples of memristors and adjusting their parameters to change their response requires a laborious fabrication process. Moreover, sample to sample variability makes experimentation with memristor-based synapses even harder. The usual alternatives are to either simulate or emulate the memristive systems under study. Both methodologies require the use of accurate modeling equations. In this paper, we present a diffusive compact model of memristive behavior that has already been experimentally validated. Furthermore, we implement an emulation architecture that enables us to freely explore the synapse-like characteristics of memristors. The main advantage of emulation over simulation is that the former allows us to work with real-world circuits. Our results can give some insight into the desirable characteristics of the memristors for neuromorphic applications. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-07-13 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/123160 Ferri, Agustín Cisternas; Rapoport, Alan; Fierens, Pablo Ignacio; Patterson, Germán Agustín; Miranda, Enrique; et al.; On the application of a diffusive memristor compact model to neuromorphic circuits; Multidisciplinary Digital Publishing Institute; Materials; 12; 14; 13-7-2019; 1-18 1996-1944 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/123160 |
identifier_str_mv |
Ferri, Agustín Cisternas; Rapoport, Alan; Fierens, Pablo Ignacio; Patterson, Germán Agustín; Miranda, Enrique; et al.; On the application of a diffusive memristor compact model to neuromorphic circuits; Multidisciplinary Digital Publishing Institute; Materials; 12; 14; 13-7-2019; 1-18 1996-1944 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/1996-1944/12/14/2260 info:eu-repo/semantics/altIdentifier/doi/10.3390/ma12142260 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
publisher.none.fl_str_mv |
Multidisciplinary Digital Publishing Institute |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614270221811712 |
score |
13.070432 |