Learning by mistakes in memristor networks
- Autores
- Carbajal, Juan Pablo; Mártin, Daniel Alejandro; Chialvo, Dante Renato
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Recent results revived the interest in the implementation of analog devices able to perform brainlike operations. Here we introduce a training algorithm for a memristor network which is inspired by previous work on biological learning. Robust results are obtained from computer simulations of a network of voltage-controlled memristive devices. Its implementation in hardware is straightforward, being scalable and requiring very little peripheral computation overhead.
Fil: Carbajal, Juan Pablo. University of Applied Sciences of Eastern Switzerland; Suiza
Fil: Mártin, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Físicas. - Universidad Nacional de San Martín. Instituto de Ciencias Físicas; Argentina
Fil: Chialvo, Dante Renato. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Físicas. - Universidad Nacional de San Martín. Instituto de Ciencias Físicas; Argentina - Materia
-
MEMRISTOR
NETWORKS
NEUROMORPHING
NEURAL NETWORKS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/213954
Ver los metadatos del registro completo
id |
CONICETDig_d03bc4d4813253f9fe452bc7e0ef5584 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/213954 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Learning by mistakes in memristor networksCarbajal, Juan PabloMártin, Daniel AlejandroChialvo, Dante RenatoMEMRISTORNETWORKSNEUROMORPHINGNEURAL NETWORKShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1Recent results revived the interest in the implementation of analog devices able to perform brainlike operations. Here we introduce a training algorithm for a memristor network which is inspired by previous work on biological learning. Robust results are obtained from computer simulations of a network of voltage-controlled memristive devices. Its implementation in hardware is straightforward, being scalable and requiring very little peripheral computation overhead.Fil: Carbajal, Juan Pablo. University of Applied Sciences of Eastern Switzerland; SuizaFil: Mártin, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Físicas. - Universidad Nacional de San Martín. Instituto de Ciencias Físicas; ArgentinaFil: Chialvo, Dante Renato. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Físicas. - Universidad Nacional de San Martín. Instituto de Ciencias Físicas; ArgentinaAmerican Physical Society2022-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/213954Carbajal, Juan Pablo; Mártin, Daniel Alejandro; Chialvo, Dante Renato; Learning by mistakes in memristor networks; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 105; 5; 5-2022; 1-101539-37552470-0053CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.105.054306info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.105.054306info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:21:29Zoai:ri.conicet.gov.ar:11336/213954instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:21:29.314CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Learning by mistakes in memristor networks |
title |
Learning by mistakes in memristor networks |
spellingShingle |
Learning by mistakes in memristor networks Carbajal, Juan Pablo MEMRISTOR NETWORKS NEUROMORPHING NEURAL NETWORKS |
title_short |
Learning by mistakes in memristor networks |
title_full |
Learning by mistakes in memristor networks |
title_fullStr |
Learning by mistakes in memristor networks |
title_full_unstemmed |
Learning by mistakes in memristor networks |
title_sort |
Learning by mistakes in memristor networks |
dc.creator.none.fl_str_mv |
Carbajal, Juan Pablo Mártin, Daniel Alejandro Chialvo, Dante Renato |
author |
Carbajal, Juan Pablo |
author_facet |
Carbajal, Juan Pablo Mártin, Daniel Alejandro Chialvo, Dante Renato |
author_role |
author |
author2 |
Mártin, Daniel Alejandro Chialvo, Dante Renato |
author2_role |
author author |
dc.subject.none.fl_str_mv |
MEMRISTOR NETWORKS NEUROMORPHING NEURAL NETWORKS |
topic |
MEMRISTOR NETWORKS NEUROMORPHING NEURAL NETWORKS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Recent results revived the interest in the implementation of analog devices able to perform brainlike operations. Here we introduce a training algorithm for a memristor network which is inspired by previous work on biological learning. Robust results are obtained from computer simulations of a network of voltage-controlled memristive devices. Its implementation in hardware is straightforward, being scalable and requiring very little peripheral computation overhead. Fil: Carbajal, Juan Pablo. University of Applied Sciences of Eastern Switzerland; Suiza Fil: Mártin, Daniel Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Físicas. - Universidad Nacional de San Martín. Instituto de Ciencias Físicas; Argentina Fil: Chialvo, Dante Renato. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Ciencias Físicas. - Universidad Nacional de San Martín. Instituto de Ciencias Físicas; Argentina |
description |
Recent results revived the interest in the implementation of analog devices able to perform brainlike operations. Here we introduce a training algorithm for a memristor network which is inspired by previous work on biological learning. Robust results are obtained from computer simulations of a network of voltage-controlled memristive devices. Its implementation in hardware is straightforward, being scalable and requiring very little peripheral computation overhead. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/213954 Carbajal, Juan Pablo; Mártin, Daniel Alejandro; Chialvo, Dante Renato; Learning by mistakes in memristor networks; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 105; 5; 5-2022; 1-10 1539-3755 2470-0053 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/213954 |
identifier_str_mv |
Carbajal, Juan Pablo; Mártin, Daniel Alejandro; Chialvo, Dante Renato; Learning by mistakes in memristor networks; American Physical Society; Physical Review E: Statistical, Nonlinear and Soft Matter Physics; 105; 5; 5-2022; 1-10 1539-3755 2470-0053 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://journals.aps.org/pre/abstract/10.1103/PhysRevE.105.054306 info:eu-repo/semantics/altIdentifier/doi/10.1103/PhysRevE.105.054306 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082603486019584 |
score |
13.22299 |